Liouville classification of integrable geodesic flows on a torus of revolution in a potential field
Vestnik Moskovskogo universiteta. Matematika, mehanika, no. 3 (2017), pp. 35-43

Voir la notice de l'article provenant de la source Math-Net.Ru

A Liouville classification of integrable Hamiltonian systems being geodesic flows on a 2-dimensional torus of revolution in an invariant potential field in the case of linear integral is obtained. This classification is obtained using the Fomenko–Zieschang invariant (marked molecules) of studied systems. All types of bifurcation curves are described. A classification of singularities of the system solutions is also obtained.
@article{VMUMM_2017_3_a4,
     author = {D. S. Timonina},
     title = {Liouville classification of integrable geodesic flows on a torus of revolution in a potential field},
     journal = {Vestnik Moskovskogo universiteta. Matematika, mehanika},
     pages = {35--43},
     publisher = {mathdoc},
     number = {3},
     year = {2017},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/VMUMM_2017_3_a4/}
}
TY  - JOUR
AU  - D. S. Timonina
TI  - Liouville classification of integrable geodesic flows on a torus of revolution in a potential field
JO  - Vestnik Moskovskogo universiteta. Matematika, mehanika
PY  - 2017
SP  - 35
EP  - 43
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/VMUMM_2017_3_a4/
LA  - ru
ID  - VMUMM_2017_3_a4
ER  - 
%0 Journal Article
%A D. S. Timonina
%T Liouville classification of integrable geodesic flows on a torus of revolution in a potential field
%J Vestnik Moskovskogo universiteta. Matematika, mehanika
%D 2017
%P 35-43
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/VMUMM_2017_3_a4/
%G ru
%F VMUMM_2017_3_a4
D. S. Timonina. Liouville classification of integrable geodesic flows on a torus of revolution in a potential field. Vestnik Moskovskogo universiteta. Matematika, mehanika, no. 3 (2017), pp. 35-43. http://geodesic.mathdoc.fr/item/VMUMM_2017_3_a4/