Liouville classification of integrable geodesic flows on a torus of revolution in a potential field
Vestnik Moskovskogo universiteta. Matematika, mehanika, no. 3 (2017), pp. 35-43 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

A Liouville classification of integrable Hamiltonian systems being geodesic flows on a 2-dimensional torus of revolution in an invariant potential field in the case of linear integral is obtained. This classification is obtained using the Fomenko–Zieschang invariant (marked molecules) of studied systems. All types of bifurcation curves are described. A classification of singularities of the system solutions is also obtained.
@article{VMUMM_2017_3_a4,
     author = {D. S. Timonina},
     title = {Liouville classification of integrable geodesic flows on a torus of revolution in a potential field},
     journal = {Vestnik Moskovskogo universiteta. Matematika, mehanika},
     pages = {35--43},
     year = {2017},
     number = {3},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/VMUMM_2017_3_a4/}
}
TY  - JOUR
AU  - D. S. Timonina
TI  - Liouville classification of integrable geodesic flows on a torus of revolution in a potential field
JO  - Vestnik Moskovskogo universiteta. Matematika, mehanika
PY  - 2017
SP  - 35
EP  - 43
IS  - 3
UR  - http://geodesic.mathdoc.fr/item/VMUMM_2017_3_a4/
LA  - ru
ID  - VMUMM_2017_3_a4
ER  - 
%0 Journal Article
%A D. S. Timonina
%T Liouville classification of integrable geodesic flows on a torus of revolution in a potential field
%J Vestnik Moskovskogo universiteta. Matematika, mehanika
%D 2017
%P 35-43
%N 3
%U http://geodesic.mathdoc.fr/item/VMUMM_2017_3_a4/
%G ru
%F VMUMM_2017_3_a4
D. S. Timonina. Liouville classification of integrable geodesic flows on a torus of revolution in a potential field. Vestnik Moskovskogo universiteta. Matematika, mehanika, no. 3 (2017), pp. 35-43. http://geodesic.mathdoc.fr/item/VMUMM_2017_3_a4/

[1] Bolsinov A.V., Fomenko A.T., Integriruemye gamiltonovy sistemy, v. 1, 2, Udmurtskii universitet, Izhevsk, 1999 | MR

[2] Kantonistova E.O., “Topologicheskaya klassifikatsiya integriruemykh gamiltonovykh sistem na poverkhnostyakh vrascheniya v potentsialnom pole”, Matem. sb., 207:3 (2016), 47–92 | DOI | MR | Zbl

[3] Fomenko A.T., “Simplekticheskaya topologiya vpolne integriruemykh gamiltonovykh sistem”, Uspekhi matem. nauk, 44:1(265) (1989), 145–173 | MR

[4] Bolsinov A.V., Fomenko A.T., “Traektornaya klassifikatsiya geodezicheskikh potokov na dvumernykh ellipsoidakh. Zadacha Yakobi traektorno ekvivalentna integriruemomu sluchayu Eilera v dinamike tverdogo tela”, Funkts. analiz i ego pril., 29:3 (1995), 1–15 | MR | Zbl

[5] Bolsinov A.V., Fomenko A.T., Integrable Hamiltonian systems. Geometry, topology, classification, CHAPMAN and HALL/CRC, Boca Raton, L.–N.Y.–Washington, D.C. USA, 2004 | MR | Zbl

[6] Fomenko A.T., “Teoriya bordizmov integriruemykh gamiltonovykh nevyrozhdennykh sistem s dvumya stepenyami svobody. Novyi topologicheskii invariant mnogomernykh integriruemykh sistem”, Izv. AN SSSR. Cer. matem., 55:4 (1991), 747–779

[7] Fomenko A.T., “Topologicheskii invariant, grubo klassifitsiruyuschii integriruemye strogo nevyrozhdennye gamiltoniany na chetyrekhmernykh simplekticheskikh mnogoobraziyakh”, Funkts. analiz i ego pril., 25:4 (1991), 23–25 | MR

[8] Fomenko A.T., Morozov P.V., “Some new results in topological classification of integrable systems in rigid body dynamics”, Proc. Workshop “Contemporary geometry and related topics” (Belgrade, Yugoslavia, 15–21 May 2002), World Scientific Publishing Co., Belgrade, 2004, 201–222 | DOI | MR | Zbl

[9] Bolsinov A.V., Fomenko A.T., Oshemkov A.A., Topological methods in the theory of integrable Hamiltonian systems, Cambridge Scientific Publishers, Cambridge, 2006 | MR

[10] Kudryavtseva E.A., Nikonov I.M., Fomenko A.T., “Maksimalno simmetrichnye kletochnye razbieniya poverkhnostei i ikh nakrytiya”, Matem. sb., 199:9 (2008), 3–96 | DOI | MR | Zbl

[11] Kudryavtseva E.A., Fomenko A.T., “Gruppy simmetrii pravilnykh funktsii Morsa na poverkhnostyakh”, Dokl. RAN. Ser. matem. 2012, 446:6, 615–617 | MR | Zbl

[12] Konyaev A.Yu., Fomenko A.T., “Algebra and geometry through Hamiltonian systems”, Continuous and disturbed systems. Theory and applications, Solid Mechanics and Its Applications, 211, eds. V.Z. Zgurovsky, V.A. Sadovnichiy, Springer, 2014, 3–21 | DOI | MR | Zbl

[13] Fokicheva V.V., Fomenko A.T., “Integriruemye billiardy modeliruyut vazhnye integriruemye sluchai dinamiki tverdogo tela”, Dokl. RAN. Ser. matem., 465:2 (2015), 150–153 | DOI | MR | Zbl

[14] Fokicheva V.V., Fomenko A.T., “Billiard systems as the models for the rigid body dynamics”, Studies in systems, decision and control, Advances in Dynamical Systems and Control, 69, eds. V.A. Sadovnichiy, V.Z. Zgurovsky, Springer International Publishing Switzerland, Kiev, 2016, 13–32 | DOI | MR