Liouville classification of integrable geodesic flows on a torus of revolution in a potential field
    
    
  
  
  
      
      
      
        
Vestnik Moskovskogo universiteta. Matematika, mehanika, no. 3 (2017), pp. 35-43
    
  
  
  
  
  
    
      
      
        
      
      
      
    Voir la notice de l'article provenant de la source Math-Net.Ru
            
              			A Liouville classification of integrable Hamiltonian systems being geodesic flows on a 2-dimensional torus of revolution in an invariant potential field in the case of linear integral is obtained. This classification is obtained using the Fomenko–Zieschang invariant (marked molecules) of studied systems. All types of bifurcation curves are described. A classification of singularities of the system solutions is also obtained.
			
            
            
            
          
        
      @article{VMUMM_2017_3_a4,
     author = {D. S. Timonina},
     title = {Liouville classification of integrable geodesic flows on a torus of revolution in a potential field},
     journal = {Vestnik Moskovskogo universiteta. Matematika, mehanika},
     pages = {35--43},
     publisher = {mathdoc},
     number = {3},
     year = {2017},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/VMUMM_2017_3_a4/}
}
                      
                      
                    TY - JOUR AU - D. S. Timonina TI - Liouville classification of integrable geodesic flows on a torus of revolution in a potential field JO - Vestnik Moskovskogo universiteta. Matematika, mehanika PY - 2017 SP - 35 EP - 43 IS - 3 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/VMUMM_2017_3_a4/ LA - ru ID - VMUMM_2017_3_a4 ER -
%0 Journal Article %A D. S. Timonina %T Liouville classification of integrable geodesic flows on a torus of revolution in a potential field %J Vestnik Moskovskogo universiteta. Matematika, mehanika %D 2017 %P 35-43 %N 3 %I mathdoc %U http://geodesic.mathdoc.fr/item/VMUMM_2017_3_a4/ %G ru %F VMUMM_2017_3_a4
D. S. Timonina. Liouville classification of integrable geodesic flows on a torus of revolution in a potential field. Vestnik Moskovskogo universiteta. Matematika, mehanika, no. 3 (2017), pp. 35-43. http://geodesic.mathdoc.fr/item/VMUMM_2017_3_a4/
