Stability of solutions in optimal reinsurance problem
Vestnik Moskovskogo universiteta. Matematika, mehanika, no. 2 (2017), pp. 58-61

Voir la notice de l'article provenant de la source Math-Net.Ru

We consider a discrete-time insurance model with stop-loss reinsurance. One-period insurance claims form a sequence of independent identically distributed nonnegative random variables with finite mean. The insurer maintains the company surplus above a chosen level $a$ by capital injections. We investigate the stability of optimal capital injections to the variability of claims distribution. The term “optimal” means the minimal amount of injections that can be found from the corresponding Bellman equation.
@article{VMUMM_2017_2_a9,
     author = {J. V. Gusak},
     title = {Stability of solutions in optimal reinsurance problem},
     journal = {Vestnik Moskovskogo universiteta. Matematika, mehanika},
     pages = {58--61},
     publisher = {mathdoc},
     number = {2},
     year = {2017},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/VMUMM_2017_2_a9/}
}
TY  - JOUR
AU  - J. V. Gusak
TI  - Stability of solutions in optimal reinsurance problem
JO  - Vestnik Moskovskogo universiteta. Matematika, mehanika
PY  - 2017
SP  - 58
EP  - 61
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/VMUMM_2017_2_a9/
LA  - ru
ID  - VMUMM_2017_2_a9
ER  - 
%0 Journal Article
%A J. V. Gusak
%T Stability of solutions in optimal reinsurance problem
%J Vestnik Moskovskogo universiteta. Matematika, mehanika
%D 2017
%P 58-61
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/VMUMM_2017_2_a9/
%G ru
%F VMUMM_2017_2_a9
J. V. Gusak. Stability of solutions in optimal reinsurance problem. Vestnik Moskovskogo universiteta. Matematika, mehanika, no. 2 (2017), pp. 58-61. http://geodesic.mathdoc.fr/item/VMUMM_2017_2_a9/