Stability of solutions in optimal reinsurance problem
Vestnik Moskovskogo universiteta. Matematika, mehanika, no. 2 (2017), pp. 58-61
Cet article a éte moissonné depuis la source Math-Net.Ru
We consider a discrete-time insurance model with stop-loss reinsurance. One-period insurance claims form a sequence of independent identically distributed nonnegative random variables with finite mean. The insurer maintains the company surplus above a chosen level $a$ by capital injections. We investigate the stability of optimal capital injections to the variability of claims distribution. The term “optimal” means the minimal amount of injections that can be found from the corresponding Bellman equation.
@article{VMUMM_2017_2_a9,
author = {J. V. Gusak},
title = {Stability of solutions in optimal reinsurance problem},
journal = {Vestnik Moskovskogo universiteta. Matematika, mehanika},
pages = {58--61},
year = {2017},
number = {2},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/VMUMM_2017_2_a9/}
}
J. V. Gusak. Stability of solutions in optimal reinsurance problem. Vestnik Moskovskogo universiteta. Matematika, mehanika, no. 2 (2017), pp. 58-61. http://geodesic.mathdoc.fr/item/VMUMM_2017_2_a9/
[1] Bulinskaya E.V., Gusak J.V, Muromskaya A.A., “Discrete-time insurance model with capital injections and reinsurance”, Methodology and Computing in Applied Probability, 17:4 (2015), 899–914 | DOI | MR | Zbl
[2] Rachev S.T., Klebanov L., Stoyanov S.V., Fabozzi F., The methods of distances in the theory of probability and statistics, Springer-Verlag, N.Y., 2013 | MR | Zbl
[3] Kolmogorov A.N., Fomin S.V., Elementy teorii funktsii i funktsionalnogo analiza, Nauka, M., 1976 | MR