Constructive theory of enumerable species
Vestnik Moskovskogo universiteta. Matematika, mehanika, no. 2 (2017), pp. 13-19 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

A construcrive semantics for the language of the set theory with atoms based on interpreting set variables by enumerable species is defined. The soundness of the axioms of the Zermelo–Fraenkel set theory with this semantics is completely studied.
@article{VMUMM_2017_2_a2,
     author = {V. E. Plisko},
     title = {Constructive theory of enumerable species},
     journal = {Vestnik Moskovskogo universiteta. Matematika, mehanika},
     pages = {13--19},
     year = {2017},
     number = {2},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/VMUMM_2017_2_a2/}
}
TY  - JOUR
AU  - V. E. Plisko
TI  - Constructive theory of enumerable species
JO  - Vestnik Moskovskogo universiteta. Matematika, mehanika
PY  - 2017
SP  - 13
EP  - 19
IS  - 2
UR  - http://geodesic.mathdoc.fr/item/VMUMM_2017_2_a2/
LA  - ru
ID  - VMUMM_2017_2_a2
ER  - 
%0 Journal Article
%A V. E. Plisko
%T Constructive theory of enumerable species
%J Vestnik Moskovskogo universiteta. Matematika, mehanika
%D 2017
%P 13-19
%N 2
%U http://geodesic.mathdoc.fr/item/VMUMM_2017_2_a2/
%G ru
%F VMUMM_2017_2_a2
V. E. Plisko. Constructive theory of enumerable species. Vestnik Moskovskogo universiteta. Matematika, mehanika, no. 2 (2017), pp. 13-19. http://geodesic.mathdoc.fr/item/VMUMM_2017_2_a2/

[1] Geiting A., Intuitsionizm, Mir, M., 1965

[2] Rodzhers Kh., Teoriya rekursivnykh funktsii i effektivnaya vychislimost, Mir, M., 1972 | MR

[3] Klini S.K., Vvedenie v metamatematiku, IL, M., 1957

[4] Iekh T., Teoriya mnozhestv i metod forsinga, Mir, M., 1973 | MR