The rate of convergence of weak greedy approximations over orthogonal dictionaries
Vestnik Moskovskogo universiteta. Matematika, mehanika, no. 2 (2017), pp. 68-72
Voir la notice de l'article provenant de la source Math-Net.Ru
Convergence rate of weak orthogonal greedy algorithm is studied for the subspace $\ell^1\subset\ell^2$ and orthogonal dictionaries. It is shown that general results on convergence rate of weak orthogonal greedy algorithms can be essentially improved in the studied case. It is also shown that this improvement is asymptotically sharp.
@article{VMUMM_2017_2_a12,
author = {A. S. Orlova},
title = {The rate of convergence of weak greedy approximations over orthogonal dictionaries},
journal = {Vestnik Moskovskogo universiteta. Matematika, mehanika},
pages = {68--72},
publisher = {mathdoc},
number = {2},
year = {2017},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/VMUMM_2017_2_a12/}
}
TY - JOUR AU - A. S. Orlova TI - The rate of convergence of weak greedy approximations over orthogonal dictionaries JO - Vestnik Moskovskogo universiteta. Matematika, mehanika PY - 2017 SP - 68 EP - 72 IS - 2 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/VMUMM_2017_2_a12/ LA - ru ID - VMUMM_2017_2_a12 ER -
A. S. Orlova. The rate of convergence of weak greedy approximations over orthogonal dictionaries. Vestnik Moskovskogo universiteta. Matematika, mehanika, no. 2 (2017), pp. 68-72. http://geodesic.mathdoc.fr/item/VMUMM_2017_2_a12/