The rate of convergence of weak greedy approximations over orthogonal dictionaries
Vestnik Moskovskogo universiteta. Matematika, mehanika, no. 2 (2017), pp. 68-72

Voir la notice de l'article provenant de la source Math-Net.Ru

Convergence rate of weak orthogonal greedy algorithm is studied for the subspace $\ell^1\subset\ell^2$ and orthogonal dictionaries. It is shown that general results on convergence rate of weak orthogonal greedy algorithms can be essentially improved in the studied case. It is also shown that this improvement is asymptotically sharp.
@article{VMUMM_2017_2_a12,
     author = {A. S. Orlova},
     title = {The rate of convergence of weak greedy approximations over orthogonal dictionaries},
     journal = {Vestnik Moskovskogo universiteta. Matematika, mehanika},
     pages = {68--72},
     publisher = {mathdoc},
     number = {2},
     year = {2017},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/VMUMM_2017_2_a12/}
}
TY  - JOUR
AU  - A. S. Orlova
TI  - The rate of convergence of weak greedy approximations over orthogonal dictionaries
JO  - Vestnik Moskovskogo universiteta. Matematika, mehanika
PY  - 2017
SP  - 68
EP  - 72
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/VMUMM_2017_2_a12/
LA  - ru
ID  - VMUMM_2017_2_a12
ER  - 
%0 Journal Article
%A A. S. Orlova
%T The rate of convergence of weak greedy approximations over orthogonal dictionaries
%J Vestnik Moskovskogo universiteta. Matematika, mehanika
%D 2017
%P 68-72
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/VMUMM_2017_2_a12/
%G ru
%F VMUMM_2017_2_a12
A. S. Orlova. The rate of convergence of weak greedy approximations over orthogonal dictionaries. Vestnik Moskovskogo universiteta. Matematika, mehanika, no. 2 (2017), pp. 68-72. http://geodesic.mathdoc.fr/item/VMUMM_2017_2_a12/