The absence of residual property for total hyper-frequencies of solutions to third order differential equations
Vestnik Moskovskogo universiteta. Matematika, mehanika, no. 2 (2017), pp. 65-68 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

It is found that complete hyper-frequencies regarded as functional on the set of solutions to linear homogeneous third order differential equations with continuous bounded on the semi-line coefficients are not residual (i.e. can be changed when changing solution on a finite interval).
@article{VMUMM_2017_2_a11,
     author = {A. Kh. Stash},
     title = {The absence of residual property for total hyper-frequencies of solutions to third order differential equations},
     journal = {Vestnik Moskovskogo universiteta. Matematika, mehanika},
     pages = {65--68},
     year = {2017},
     number = {2},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/VMUMM_2017_2_a11/}
}
TY  - JOUR
AU  - A. Kh. Stash
TI  - The absence of residual property for total hyper-frequencies of solutions to third order differential equations
JO  - Vestnik Moskovskogo universiteta. Matematika, mehanika
PY  - 2017
SP  - 65
EP  - 68
IS  - 2
UR  - http://geodesic.mathdoc.fr/item/VMUMM_2017_2_a11/
LA  - ru
ID  - VMUMM_2017_2_a11
ER  - 
%0 Journal Article
%A A. Kh. Stash
%T The absence of residual property for total hyper-frequencies of solutions to third order differential equations
%J Vestnik Moskovskogo universiteta. Matematika, mehanika
%D 2017
%P 65-68
%N 2
%U http://geodesic.mathdoc.fr/item/VMUMM_2017_2_a11/
%G ru
%F VMUMM_2017_2_a11
A. Kh. Stash. The absence of residual property for total hyper-frequencies of solutions to third order differential equations. Vestnik Moskovskogo universiteta. Matematika, mehanika, no. 2 (2017), pp. 65-68. http://geodesic.mathdoc.fr/item/VMUMM_2017_2_a11/

[1] Sergeev I.N., “Opredelenie i svoistva kharakteristicheskikh chastot lineinogo uravneniya”, Tr. Seminara im. I.G. Petrovskogo, 25, 2006, 249–294 | Zbl

[2] Sergeev I.N., “Opredelenie polnykh chastot reshenii lineinogo uravneniya”, Differents. uravneniya, 44:11 (2008), 1577

[3] Sergeev I.N., “Zamechatelnoe sovpadenie kharakteristik koleblemosti i bluzhdaemosti reshenii differentsialnykh sistem”, Matem. sb., 204:1 (2013), 119–138 | DOI | MR | Zbl

[4] Sergeev I.N., “K teorii pokazatelei Lyapunova lineinykh sistem differentsialnykh uravnenii”, Tr. Seminara im. I.G. Petrovskogo, 9, 1983, 111–166 | Zbl

[5] Stash A.Kh., “O suschestvovanii lineinogo differentsialnogo uravneniya tretego poryadka s kontinualnymi spektrami polnoi i vektornoi chastot”, Vestn. Adygeiskogo gos. un-ta. Ser. Estestvenno-matematicheskie i tekhnicheskie nauki, 2013, no. 3(122), 9–17 http://vestnik.adygnet.ru

[6] Sergeev I.N., “Koleblemost i bluzhdaemost reshenii differentsialnogo uravneniya vtorogo poryadka”, Vestn. Mosk. un-ta. Matem. Mekhan., 2011, no. 6, 21–26 | Zbl

[7] Filippov A.F., Vvedenie v teoriyu differentsialnykh uravnenii, Editorial URSS, M., 2004

[8] Sergeev I.N., “Ob upravlenii resheniyami lineinogo differentsialnogo uravneniya”, Vestn. Mosk. un-ta. Matem. Mekhan., 2009, no. 3, 25–33 | Zbl