Characterization of $\Bbb R$-factorizable $G$-spaces
Vestnik Moskovskogo universiteta. Matematika, mehanika, no. 2 (2017), pp. 7-12

Voir la notice de l'article provenant de la source Math-Net.Ru

In this paper we characterize $\mathbb R$-factorizability of $G$-spaces and prove the equivalence of $\mathbb R$-factorizability and $\omega$-$U$ property for $G$-spaces with $\mathrm{d}$-open actions of $\omega$-narrow groups. It is shown that the $\mathbb R$-factorizability characterizes those compact coset spaces which are coset spaces of $\omega$-narrow groups. The notion of $m$- and $M$-factorizable $G$-spaces is introduced, which generalizes the corresponding notions for topological groups.
@article{VMUMM_2017_2_a1,
     author = {E. Martyanov},
     title = {Characterization of $\Bbb R$-factorizable $G$-spaces},
     journal = {Vestnik Moskovskogo universiteta. Matematika, mehanika},
     pages = {7--12},
     publisher = {mathdoc},
     number = {2},
     year = {2017},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/VMUMM_2017_2_a1/}
}
TY  - JOUR
AU  - E. Martyanov
TI  - Characterization of $\Bbb R$-factorizable $G$-spaces
JO  - Vestnik Moskovskogo universiteta. Matematika, mehanika
PY  - 2017
SP  - 7
EP  - 12
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/VMUMM_2017_2_a1/
LA  - ru
ID  - VMUMM_2017_2_a1
ER  - 
%0 Journal Article
%A E. Martyanov
%T Characterization of $\Bbb R$-factorizable $G$-spaces
%J Vestnik Moskovskogo universiteta. Matematika, mehanika
%D 2017
%P 7-12
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/VMUMM_2017_2_a1/
%G ru
%F VMUMM_2017_2_a1
E. Martyanov. Characterization of $\Bbb R$-factorizable $G$-spaces. Vestnik Moskovskogo universiteta. Matematika, mehanika, no. 2 (2017), pp. 7-12. http://geodesic.mathdoc.fr/item/VMUMM_2017_2_a1/