Perturbed stable systems on a plane.~II
Vestnik Moskovskogo universiteta. Matematika, mehanika, no. 1 (2017), pp. 53-57

Voir la notice de l'article provenant de la source Math-Net.Ru

In the second part of this paper, a new problem of transition in a bistable system with two attractors is considered.
@article{VMUMM_2017_1_a8,
     author = {V. V. Aleksandrov and T. B. Alexandrova and I. S. Konovalenko and K. V. Tikhonova},
     title = {Perturbed stable systems on a {plane.~II}},
     journal = {Vestnik Moskovskogo universiteta. Matematika, mehanika},
     pages = {53--57},
     publisher = {mathdoc},
     number = {1},
     year = {2017},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/VMUMM_2017_1_a8/}
}
TY  - JOUR
AU  - V. V. Aleksandrov
AU  - T. B. Alexandrova
AU  - I. S. Konovalenko
AU  - K. V. Tikhonova
TI  - Perturbed stable systems on a plane.~II
JO  - Vestnik Moskovskogo universiteta. Matematika, mehanika
PY  - 2017
SP  - 53
EP  - 57
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/VMUMM_2017_1_a8/
LA  - ru
ID  - VMUMM_2017_1_a8
ER  - 
%0 Journal Article
%A V. V. Aleksandrov
%A T. B. Alexandrova
%A I. S. Konovalenko
%A K. V. Tikhonova
%T Perturbed stable systems on a plane.~II
%J Vestnik Moskovskogo universiteta. Matematika, mehanika
%D 2017
%P 53-57
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/VMUMM_2017_1_a8/
%G ru
%F VMUMM_2017_1_a8
V. V. Aleksandrov; T. B. Alexandrova; I. S. Konovalenko; K. V. Tikhonova. Perturbed stable systems on a plane.~II. Vestnik Moskovskogo universiteta. Matematika, mehanika, no. 1 (2017), pp. 53-57. http://geodesic.mathdoc.fr/item/VMUMM_2017_1_a8/