Perturbed stable systems on a plane.~II
Vestnik Moskovskogo universiteta. Matematika, mehanika, no. 1 (2017), pp. 53-57
Voir la notice de l'article provenant de la source Math-Net.Ru
In the second part of this paper, a new problem of transition in a bistable system with two
attractors is considered.
@article{VMUMM_2017_1_a8,
author = {V. V. Aleksandrov and T. B. Alexandrova and I. S. Konovalenko and K. V. Tikhonova},
title = {Perturbed stable systems on a {plane.~II}},
journal = {Vestnik Moskovskogo universiteta. Matematika, mehanika},
pages = {53--57},
publisher = {mathdoc},
number = {1},
year = {2017},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/VMUMM_2017_1_a8/}
}
TY - JOUR AU - V. V. Aleksandrov AU - T. B. Alexandrova AU - I. S. Konovalenko AU - K. V. Tikhonova TI - Perturbed stable systems on a plane.~II JO - Vestnik Moskovskogo universiteta. Matematika, mehanika PY - 2017 SP - 53 EP - 57 IS - 1 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/VMUMM_2017_1_a8/ LA - ru ID - VMUMM_2017_1_a8 ER -
%0 Journal Article %A V. V. Aleksandrov %A T. B. Alexandrova %A I. S. Konovalenko %A K. V. Tikhonova %T Perturbed stable systems on a plane.~II %J Vestnik Moskovskogo universiteta. Matematika, mehanika %D 2017 %P 53-57 %N 1 %I mathdoc %U http://geodesic.mathdoc.fr/item/VMUMM_2017_1_a8/ %G ru %F VMUMM_2017_1_a8
V. V. Aleksandrov; T. B. Alexandrova; I. S. Konovalenko; K. V. Tikhonova. Perturbed stable systems on a plane.~II. Vestnik Moskovskogo universiteta. Matematika, mehanika, no. 1 (2017), pp. 53-57. http://geodesic.mathdoc.fr/item/VMUMM_2017_1_a8/