Stability of a conducting liquid film flowing down in a variable electric field
Vestnik Moskovskogo universiteta. Matematika, mehanika, no. 1 (2017), pp. 47-53 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

In the paper we consider the thin conducting viscous liquid film flow down along one of the plates of a capacitor connected to an AC power supply. It is shown that the presence of the electric field leads to the destabilization of the flow; moreover, the parametric resonance of capillary waves is observed.
@article{VMUMM_2017_1_a7,
     author = {E. I. Mogilevskii and V. Ya. Shkadov},
     title = {Stability of a conducting liquid film flowing down in a variable electric field},
     journal = {Vestnik Moskovskogo universiteta. Matematika, mehanika},
     pages = {47--53},
     year = {2017},
     number = {1},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/VMUMM_2017_1_a7/}
}
TY  - JOUR
AU  - E. I. Mogilevskii
AU  - V. Ya. Shkadov
TI  - Stability of a conducting liquid film flowing down in a variable electric field
JO  - Vestnik Moskovskogo universiteta. Matematika, mehanika
PY  - 2017
SP  - 47
EP  - 53
IS  - 1
UR  - http://geodesic.mathdoc.fr/item/VMUMM_2017_1_a7/
LA  - ru
ID  - VMUMM_2017_1_a7
ER  - 
%0 Journal Article
%A E. I. Mogilevskii
%A V. Ya. Shkadov
%T Stability of a conducting liquid film flowing down in a variable electric field
%J Vestnik Moskovskogo universiteta. Matematika, mehanika
%D 2017
%P 47-53
%N 1
%U http://geodesic.mathdoc.fr/item/VMUMM_2017_1_a7/
%G ru
%F VMUMM_2017_1_a7
E. I. Mogilevskii; V. Ya. Shkadov. Stability of a conducting liquid film flowing down in a variable electric field. Vestnik Moskovskogo universiteta. Matematika, mehanika, no. 1 (2017), pp. 47-53. http://geodesic.mathdoc.fr/item/VMUMM_2017_1_a7/

[1] Kapitsa P.L., Kapitsa S.P., “Volnovye techeniya tonkikh sloev zhidkosti”, Zhurn. eksperim. i teor. fiz., 19:2 (1949), 105–120

[2] Shkadov V.Ya., “Volnovye rezhimy techeniya tonkogo sloya vyazkoi zhidkosti pod deistviem sily tyazhesti”, Izv. AN SSSR. Mekhan. zhidkosti i gaza, 1967, no. 1, 43–51

[3] Shkadov V.Ya., “K teorii volnovykh techenii tonkogo sloya vyazkoi zhidkosti”, Izv. AN SSSR. Mekhan. zhidkosti i gaza, 1968, no. 2, 20–25

[4] Shkadov V.Ya., Demekhin E.A., “Volnovye dvizheniya plenok zhidkosti na vertikalnoi poverkhnosti (teoriya dlya istolkovaniya eksperimentov)”, Uspekhi mekhaniki, 4:2 (2006), 3–65

[5] Gonzalez A., Castellanos A., “Nonlinear electrohydrodynamic waves on films falling down an inclined plane”, Phys. Rev. E, 53 (1996), 3573–3578 | DOI

[6] Tseluiko D., Papageorgiou D.T., “Wave evolution on electrified falling films”, J. Fliud Mech., 556 (2006), 361–386 | DOI | MR | Zbl

[7] Uma B., Usha R., “A thin conducting viscous film on an inclined plane in the presence of a uniform normal electric field. Bifurcation scenarios”, Phys. Fluids, 20 (2008), 022803, 17 pp. | DOI

[8] Grigorev A.I., Shiryaeva S.O., Koromyslov V.A., Belonozhko D.F., “Kapillyarnye kolebaniya i neustoichivost Tonksa–Frenkelya sloya zhidkosti konechnoi tolschiny”, Zhurn. tekhn. fiz., 67:8 (1997), 27–33

[9] Saranin V.A., Ustoichivost ravnovesiya, zaryadka, konvektsiya i vzaimodeistvie zhidkikh mass v elektricheskikh polyakh, NITs “Regulyarnaya i khaoticheskaya dinamika”, M.–Izhevsk, 2009

[10] Mogilevskii E.I., Shkadov V.Ya., “Vliyanie relefa podlozhki na techenie plenki nenyutonovskoi zhidkosti po naklonnoi ploskosti”, Vestn. Mosk. un-ta. Matem. Mekhan., 2007, no. 3, 49–56

[11] Shutov A.A., “Techenie naklonnogo poverkhnostno zaryazhennogo sloya v prodolnom elektricheskom pole”, Izv. RAN. Mekhan. zhidkosti i gaza, 2003, no. 5, 36–42 | Zbl

[12] Heining C., Bontozoglou V., Aksel N., Wierschem A., “Nonlinear resonance in viscous films on inclined wavy planes”, Int. J. Multiphase Flow, 35 (2009), 78–90 | DOI

[13] Burya A.G., Shkadov V.Ya., “Ustoichivost plenki zhidkosti, stekayuschei po koleblyuscheisya naklonnoi poverkhnosti”, Izv. RAN. Mekhan. zhidkosti i gaza, 2001, no. 5, 3–13 | MR | Zbl