A form of the solution to the Mathieu equation
Vestnik Moskovskogo universiteta. Matematika, mehanika, no. 1 (2017), pp. 42-47 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

A linear transformation of a special type is introduced to express the general solution to a second-order differential equation with a periodic coefficient using a particular solution to an auxiliary second-order nonlinear system with a periodically perturbed right-hand side. It is numerically shown that there exist periodic solutions to the auxiliary system outside the instability zones of the Mathieu equation. The obtained estimates for the instability zones are in agreement with known results.
@article{VMUMM_2017_1_a6,
     author = {V. M. Budanov},
     title = {A form of the solution to the {Mathieu} equation},
     journal = {Vestnik Moskovskogo universiteta. Matematika, mehanika},
     pages = {42--47},
     year = {2017},
     number = {1},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/VMUMM_2017_1_a6/}
}
TY  - JOUR
AU  - V. M. Budanov
TI  - A form of the solution to the Mathieu equation
JO  - Vestnik Moskovskogo universiteta. Matematika, mehanika
PY  - 2017
SP  - 42
EP  - 47
IS  - 1
UR  - http://geodesic.mathdoc.fr/item/VMUMM_2017_1_a6/
LA  - ru
ID  - VMUMM_2017_1_a6
ER  - 
%0 Journal Article
%A V. M. Budanov
%T A form of the solution to the Mathieu equation
%J Vestnik Moskovskogo universiteta. Matematika, mehanika
%D 2017
%P 42-47
%N 1
%U http://geodesic.mathdoc.fr/item/VMUMM_2017_1_a6/
%G ru
%F VMUMM_2017_1_a6
V. M. Budanov. A form of the solution to the Mathieu equation. Vestnik Moskovskogo universiteta. Matematika, mehanika, no. 1 (2017), pp. 42-47. http://geodesic.mathdoc.fr/item/VMUMM_2017_1_a6/

[1] Yakubovich V.A., Starzhinskii V.M., Lineinye differentsialnye uravneniya s periodicheskimi koeffitsientami i ikh prilozheniya, Nauka, M., 1972 | MR

[2] Demidovich B.P., Lektsii po matematicheskoi teorii ustoichivosti, Nauka, M., 1967 | MR

[3] Kalenova V.I., Morozov V.M., Lineinye nestatsionarnye sistemy i ikh prilozheniya k zadacham mekhaniki, Fizmatlit, M., 2010 | MR

[4] Stoker Dzh., Nelineinye kolebaniya v mekhanicheskikh i elektricheskikh sistemakh, IL, M., 1952

[5] Bogolyubov N.N., Mitropolskii Yu.A., Asimptoticheskie metody v teorii nelineinykh kolebanii, Nauka, M., 1974 | MR

[6] Seiranyan A.P., “Kacheli, parametricheskii rezonans”, Prikl. matem. i mekhan., 68:5 (2004), 847–856 | MR | Zbl

[7] Akulenko L.D., Nesterov S.V., “Parametricheskie kolebaniya mekhanicheskoi sistemy i ikh ustoichivost pri proizvolnom koeffitsiente modulyatsii”, Izv. RAN. Mekhan. tverdogo tela, 2013, no. 2, 3–13 | MR

[8] Kholostova O.V., “Ob ustoichivosti otnositelnykh ravnovesii dvoinogo mayatnika s vibriruyuschei tochkoi podvesa”, Izv. RAN. Mekhan. tverdogo tela, 2011, no. 4, 18–30

[9] Leonov G.A., “Effektivnye metody poiska periodicheskikh kolebanii v dinamicheskikh sistemakh”, Prikl. matem. i mekhan., 74:1 (2010), 37–73 | MR | Zbl

[10] Budanov V.M., “Ob odnoi izokhronnoi nelineinoi sisteme”, Vestn. Mosk. un-ta. Matem. Mekhan., 2013, no. 6, 59–63