Integration of Banach-valued functions and Haar series with Banach-valued coefficients
Vestnik Moskovskogo universiteta. Matematika, mehanika, no. 1 (2017), pp. 25-32 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

It is proved that for any Banach space each everywhere convergent Haar series with coefficients from this space is the Fourier–Haar series in the sense of a Henstock type integral with respect to dyadic derivation basis. At the same time convergence of Fourier–Henstock–Haar series Banach-space-valued functions is essentially dependent on properties of a space.
@article{VMUMM_2017_1_a3,
     author = {V. A. Skvortsov},
     title = {Integration of {Banach-valued} functions and {Haar} series with {Banach-valued} coefficients},
     journal = {Vestnik Moskovskogo universiteta. Matematika, mehanika},
     pages = {25--32},
     year = {2017},
     number = {1},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/VMUMM_2017_1_a3/}
}
TY  - JOUR
AU  - V. A. Skvortsov
TI  - Integration of Banach-valued functions and Haar series with Banach-valued coefficients
JO  - Vestnik Moskovskogo universiteta. Matematika, mehanika
PY  - 2017
SP  - 25
EP  - 32
IS  - 1
UR  - http://geodesic.mathdoc.fr/item/VMUMM_2017_1_a3/
LA  - ru
ID  - VMUMM_2017_1_a3
ER  - 
%0 Journal Article
%A V. A. Skvortsov
%T Integration of Banach-valued functions and Haar series with Banach-valued coefficients
%J Vestnik Moskovskogo universiteta. Matematika, mehanika
%D 2017
%P 25-32
%N 1
%U http://geodesic.mathdoc.fr/item/VMUMM_2017_1_a3/
%G ru
%F VMUMM_2017_1_a3
V. A. Skvortsov. Integration of Banach-valued functions and Haar series with Banach-valued coefficients. Vestnik Moskovskogo universiteta. Matematika, mehanika, no. 1 (2017), pp. 25-32. http://geodesic.mathdoc.fr/item/VMUMM_2017_1_a3/

[1] Hytonen T., Lacey M., “Pointwise convergence of vector-valued Fourier series”, Math. Ann., 357 (2013), 1329–1361 | DOI | MR | Zbl

[2] Hytonen T., Lacey M., Pointwise convergence of Walsh-Fourier series of vector-valued functions, 1 Feb 2012, arXiv: 1202.0209v1 [math.CA] | MR

[3] Blasco O., Signes T., “Q-concavity and q-Orlicz property on symmetric sequence spaces”, Taiwan. J. Math., 5 (2001), 331–352 | DOI | MR | Zbl

[4] Skvortsov V.A., “Henstock–Kurzweil type integrals in P-adic harmonic analysis”, Acta Math. Acad. Paedagog. Nyhazi, 20 (2004), 207–224 | MR | Zbl

[5] Golubov B.I., Efimov A.V., Skvortsov V.A., Ryady i preobrazovaniya Uolsha, Nauka, M., 1987 | MR

[6] Lukashenko T.P., Skvortsov V.A., Solodov A.P., Obobschennye integraly, URSS, M., 2010

[7] Ostaszewski K.M., Henstock integration in the plane, Mem. AMS, 63, no. 353, 1986 | MR

[8] Thomson B.S., “Derivation bases on the real line”, Real Anal. Exchange, 8:1 (1982/83), 67–207 ; 2, 278–442 | MR | MR

[9] Skvortsov V.A., Tulone F., “$\mathcal P$-ichnyi integral Khenstoka v teorii ryadov po sistemam kharakterov nul-mernykh grupp”, Vestn. Mosk. un-ta. Matem. Mekhan., 2006, no. 1, 25–29 | Zbl

[10] Schwabik S., Ye Guoju, Topics in Banach space integration, Series in Real Analysis, 10, World Scientific, Hackensack, NJ, 2005 | MR | Zbl

[11] Plotnikov M.G., “Kvazimery, khausdorfovy $p$-mery i ryady Uolsha i Khaara”, Izv. RAN. Ser. matem., 74:4 (2010), 157–188 | DOI | MR | Zbl

[12] Skvortsov V., Tulone F., “Multidimensional dyadic Kurzweil–Henstock- and Perron-type integrals in the theory of Haar and Walsh series”, J. Math. Anal. and Appl., 421:2 (2015), 1502–1518 | DOI | MR | Zbl

[13] Dilworth S.J., Girardi M., “Nowhere weak differentiability of the Pettis integral”, Quaest. Math., 18:4 (1995), 365–380 | DOI | MR | Zbl