Integration of Banach-valued functions and Haar series with Banach-valued coefficients
    
    
  
  
  
      
      
      
        
Vestnik Moskovskogo universiteta. Matematika, mehanika, no. 1 (2017), pp. 25-32
    
  
  
  
  
  
    
      
      
        
      
      
      
    Voir la notice de l'article provenant de la source Math-Net.Ru
            
              			It is proved that for any Banach space each everywhere convergent Haar series with coefficients from this space is the Fourier–Haar series in the sense of a Henstock type integral with respect to dyadic derivation basis. At the same time convergence of Fourier–Henstock–Haar series Banach-space-valued functions is essentially dependent on properties of a space.
			
            
            
            
          
        
      @article{VMUMM_2017_1_a3,
     author = {V. A. Skvortsov},
     title = {Integration of {Banach-valued} functions and {Haar} series with {Banach-valued} coefficients},
     journal = {Vestnik Moskovskogo universiteta. Matematika, mehanika},
     pages = {25--32},
     publisher = {mathdoc},
     number = {1},
     year = {2017},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/VMUMM_2017_1_a3/}
}
                      
                      
                    TY - JOUR AU - V. A. Skvortsov TI - Integration of Banach-valued functions and Haar series with Banach-valued coefficients JO - Vestnik Moskovskogo universiteta. Matematika, mehanika PY - 2017 SP - 25 EP - 32 IS - 1 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/VMUMM_2017_1_a3/ LA - ru ID - VMUMM_2017_1_a3 ER -
V. A. Skvortsov. Integration of Banach-valued functions and Haar series with Banach-valued coefficients. Vestnik Moskovskogo universiteta. Matematika, mehanika, no. 1 (2017), pp. 25-32. http://geodesic.mathdoc.fr/item/VMUMM_2017_1_a3/