Level lines of harmonic functions related to some Abelian integrals
Vestnik Moskovskogo universiteta. Matematika, mehanika, no. 1 (2017), pp. 16-25 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

The localization of level lines of harmonic functions representing real parts of certain abelian integrals is studied in the paper. Harmonic functions of such form appear in the the study of asymptotics of solutions to second-order differential equations; the corresponding level lines relate to the distribution of eigenvalues of a non-selfadjoint Sturm–Liouville problem and to position of trajectories of the corresponding quadratic differentials.
@article{VMUMM_2017_1_a2,
     author = {V. V. Fufaev},
     title = {Level lines of harmonic functions related to some {Abelian} integrals},
     journal = {Vestnik Moskovskogo universiteta. Matematika, mehanika},
     pages = {16--25},
     year = {2017},
     number = {1},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/VMUMM_2017_1_a2/}
}
TY  - JOUR
AU  - V. V. Fufaev
TI  - Level lines of harmonic functions related to some Abelian integrals
JO  - Vestnik Moskovskogo universiteta. Matematika, mehanika
PY  - 2017
SP  - 16
EP  - 25
IS  - 1
UR  - http://geodesic.mathdoc.fr/item/VMUMM_2017_1_a2/
LA  - ru
ID  - VMUMM_2017_1_a2
ER  - 
%0 Journal Article
%A V. V. Fufaev
%T Level lines of harmonic functions related to some Abelian integrals
%J Vestnik Moskovskogo universiteta. Matematika, mehanika
%D 2017
%P 16-25
%N 1
%U http://geodesic.mathdoc.fr/item/VMUMM_2017_1_a2/
%G ru
%F VMUMM_2017_1_a2
V. V. Fufaev. Level lines of harmonic functions related to some Abelian integrals. Vestnik Moskovskogo universiteta. Matematika, mehanika, no. 1 (2017), pp. 16-25. http://geodesic.mathdoc.fr/item/VMUMM_2017_1_a2/

[1] Dzhenkins Dzh., Odnolistnye funktsii i konformnye otobrazheniya, IL, M., 1962

[2] Fedoryuk M.V., Asimptoticheskie metody dlya lineinykh obyknovennykh differentsialnykh uravnenii, Nauka, M., 1983 | MR

[3] Kheding Dzh., Vvedenie v metod fazovykh integralov (metod VKB), Mir, M., 1965

[4] Drazin P.G., Reid W.H., Hydrodynamic stability, Cambridge University Press, Cambridge, 1993 | MR

[5] Stepin S.A., Fufaev V.V., “Metod fazovykh integralov v zadache kvaziklassicheskoi lokalizatsii spektra”, Dokl. RAN, 462:3 (2015), 283–287 | DOI | Zbl

[6] Hubbard J., Masur H., “Quadratic differentials and foliations”, Acta Math., 142:1 (1979), 221–274 | DOI | MR | Zbl

[7] Dnestrovskii Yu. N., Kostomarov D.P., “Ob asimptotike sobstvennykh znachenii dlya nesamosopryazhennykh kraevykh zadach”, Zhurn. vychisl. matem. i matem. fiz., 4:2 (1964), 267–277 | MR

[8] Esina A.I., Shafarevich A.I., “Usloviya kvantovaniya na rimanovykh poverkhnostyakh i kvaziklassicheskii spektr operatora Shrëdingera s kompleksnym potentsialom”, Matem. zametki, 88:2 (2010), 229–248 | DOI | MR | Zbl

[9] Esina A.I., Shafarevich A.I., “Semiclassical asymptotics of eigenvalues for non-selfadjoint operators and quantization conditions on Riemann surfaces”, Acta Polytechn., 54:2 (2014), 101–105 | DOI