Multidimensional system of Diophantine equations
Vestnik Moskovskogo universiteta. Matematika, mehanika, no. 1 (2017), pp. 68-71 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

An asymptotics for number of solutions of system of three Diophantine equations of the additive type in six variables was found. The each additive summand of these equations represents the simplest form of which degree in each variable does not exceed 1.
@article{VMUMM_2017_1_a12,
     author = {R. V. Pocherevin},
     title = {Multidimensional system of {Diophantine} equations},
     journal = {Vestnik Moskovskogo universiteta. Matematika, mehanika},
     pages = {68--71},
     year = {2017},
     number = {1},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/VMUMM_2017_1_a12/}
}
TY  - JOUR
AU  - R. V. Pocherevin
TI  - Multidimensional system of Diophantine equations
JO  - Vestnik Moskovskogo universiteta. Matematika, mehanika
PY  - 2017
SP  - 68
EP  - 71
IS  - 1
UR  - http://geodesic.mathdoc.fr/item/VMUMM_2017_1_a12/
LA  - ru
ID  - VMUMM_2017_1_a12
ER  - 
%0 Journal Article
%A R. V. Pocherevin
%T Multidimensional system of Diophantine equations
%J Vestnik Moskovskogo universiteta. Matematika, mehanika
%D 2017
%P 68-71
%N 1
%U http://geodesic.mathdoc.fr/item/VMUMM_2017_1_a12/
%G ru
%F VMUMM_2017_1_a12
R. V. Pocherevin. Multidimensional system of Diophantine equations. Vestnik Moskovskogo universiteta. Matematika, mehanika, no. 1 (2017), pp. 68-71. http://geodesic.mathdoc.fr/item/VMUMM_2017_1_a12/

[1] Hua L.K., “On the number of solutions of Tarry's problem”, Acta Scientia Sinica, 1952, no. 1, 1–76 | MR

[2] Arkhipov G.I., Karatsuba A.A., Chubarikov V.N., Teoriya kratnykh trigonometricheskikh summ, Nauka, M., 1987 | MR