@article{VMUMM_2017_1_a10,
author = {A. V. Makarov and V. V. Makarov},
title = {Countabliity of the set of closed overclasses of some minimal classes in the partly ordered set $\mathcal{L}^3_2$ of all closed classes of three-valued logic that can be mapped homomorphically onto two-valued logic},
journal = {Vestnik Moskovskogo universiteta. Matematika, mehanika},
pages = {62--64},
year = {2017},
number = {1},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/VMUMM_2017_1_a10/}
}
TY - JOUR
AU - A. V. Makarov
AU - V. V. Makarov
TI - Countabliity of the set of closed overclasses of some minimal classes in the partly ordered set $\mathcal{L}^3_2$ of all closed classes of three-valued logic that can be mapped homomorphically onto two-valued logic
JO - Vestnik Moskovskogo universiteta. Matematika, mehanika
PY - 2017
SP - 62
EP - 64
IS - 1
UR - http://geodesic.mathdoc.fr/item/VMUMM_2017_1_a10/
LA - ru
ID - VMUMM_2017_1_a10
ER -
%0 Journal Article
%A A. V. Makarov
%A V. V. Makarov
%T Countabliity of the set of closed overclasses of some minimal classes in the partly ordered set $\mathcal{L}^3_2$ of all closed classes of three-valued logic that can be mapped homomorphically onto two-valued logic
%J Vestnik Moskovskogo universiteta. Matematika, mehanika
%D 2017
%P 62-64
%N 1
%U http://geodesic.mathdoc.fr/item/VMUMM_2017_1_a10/
%G ru
%F VMUMM_2017_1_a10
A. V. Makarov; V. V. Makarov. Countabliity of the set of closed overclasses of some minimal classes in the partly ordered set $\mathcal{L}^3_2$ of all closed classes of three-valued logic that can be mapped homomorphically onto two-valued logic. Vestnik Moskovskogo universiteta. Matematika, mehanika, no. 1 (2017), pp. 62-64. http://geodesic.mathdoc.fr/item/VMUMM_2017_1_a10/
[1] Makarov A.V., “O gomomorfizmakh funktsionalnykh sistem mnogoznachnykh logik”, Matematicheskie voprosy kibernetiki, 4, Nauka, M., 1992, 5–29
[2] Makarov A.V., “Opisanie vsekh minimalnykh klassov v chastichno uporyadochennom mnozhestve ${\mathfrak{\cal L}}^{3}_{2}$ vsekh zamknutykh klassov trekhznachnoi logiki, kotorye mozhno gomomorfno otobrazit na dvuznachnuyu logiku”, Vestn. Mosk. un-ta. Matem. Mekhan., 2015, no. 1, 65–66 | Zbl
[3] Yablonskii S.V., “Funktsionalnye postroeniya v $k$-znachnoi logike”, Tr. Matem. in-ta AN SSSR, 51, 1958, 5–142
[4] Yablonskii S.V., Gavrilov G.P., Kudryavtsev V.B., Funktsii algebry logiki i klassy Posta, Nauka, M., 1966 | MR
[5] Zhuk D.N., “The cardinality of the set of all clones containing a given minimal clone on three elements”, Algebra Univers., 68 (2012), 295–320 | DOI | MR | Zbl