Probabilities of high extremes for a Gaussian stationary process in a random environment
Vestnik Moskovskogo universiteta. Matematika, mehanika, no. 1 (2017), pp. 11-16

Voir la notice de l'article provenant de la source Math-Net.Ru

Let $\xi\left(t\right)$ be a zero-mean stationary Gaussian process with the covariance function $r\left(t\right)$ of Pickands type, i.e., $r(t)=1-|t|^{\alpha}+o(|t|^{\alpha}),~t\to 0,~0\alpha\leq2$, and $\eta\left(t\right), \zeta\left(t\right)$ be periodic random processes. For any $T>0$ and independent $\xi\left(t\right)$, $\eta\left(t\right)$, $\zeta\left(t\right)$ we obtain the exact asymptotic behaviour of the probabilities $P(\max_{t\in[0,T]} \eta\left(t\right) \xi\left(t\right) > u)$, $P(\max_{t\in[0,T]} \left(\xi\left(t\right) + \eta\left(t\right)\right) > u)$ and $P(\max_{t\in[0,T]} \left(\eta\left(t\right) \xi\left(t\right) + \zeta\left(t\right)\right) > u)$ for $u \to \infty$.
@article{VMUMM_2017_1_a1,
     author = {A. O. Kleban and M. V. Korulin},
     title = {Probabilities of high extremes for a {Gaussian} stationary process in a random environment},
     journal = {Vestnik Moskovskogo universiteta. Matematika, mehanika},
     pages = {11--16},
     publisher = {mathdoc},
     number = {1},
     year = {2017},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/VMUMM_2017_1_a1/}
}
TY  - JOUR
AU  - A. O. Kleban
AU  - M. V. Korulin
TI  - Probabilities of high extremes for a Gaussian stationary process in a random environment
JO  - Vestnik Moskovskogo universiteta. Matematika, mehanika
PY  - 2017
SP  - 11
EP  - 16
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/VMUMM_2017_1_a1/
LA  - ru
ID  - VMUMM_2017_1_a1
ER  - 
%0 Journal Article
%A A. O. Kleban
%A M. V. Korulin
%T Probabilities of high extremes for a Gaussian stationary process in a random environment
%J Vestnik Moskovskogo universiteta. Matematika, mehanika
%D 2017
%P 11-16
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/VMUMM_2017_1_a1/
%G ru
%F VMUMM_2017_1_a1
A. O. Kleban; M. V. Korulin. Probabilities of high extremes for a Gaussian stationary process in a random environment. Vestnik Moskovskogo universiteta. Matematika, mehanika, no. 1 (2017), pp. 11-16. http://geodesic.mathdoc.fr/item/VMUMM_2017_1_a1/