Limit theorems for queueing systems with infinite number of servers and group arrival of requests
Vestnik Moskovskogo universiteta. Matematika, mehanika, no. 6 (2016), pp. 55-59 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

We consider an infinite-server queueing system where customers come by groups of random size at random i.d. intervals of time. The number of requests in a group and intervals between their arrivals can be dependent. We assume that service times have a regularly varying distribution with infinite mean. We obtain limit theorems for the number of customers in the system and prove limit theorems under approariate normalizations.
@article{VMUMM_2016_6_a9,
     author = {E. Chernsvakaya},
     title = {Limit theorems for queueing systems with infinite number of servers and group arrival of requests},
     journal = {Vestnik Moskovskogo universiteta. Matematika, mehanika},
     pages = {55--59},
     year = {2016},
     number = {6},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/VMUMM_2016_6_a9/}
}
TY  - JOUR
AU  - E. Chernsvakaya
TI  - Limit theorems for queueing systems with infinite number of servers and group arrival of requests
JO  - Vestnik Moskovskogo universiteta. Matematika, mehanika
PY  - 2016
SP  - 55
EP  - 59
IS  - 6
UR  - http://geodesic.mathdoc.fr/item/VMUMM_2016_6_a9/
LA  - ru
ID  - VMUMM_2016_6_a9
ER  - 
%0 Journal Article
%A E. Chernsvakaya
%T Limit theorems for queueing systems with infinite number of servers and group arrival of requests
%J Vestnik Moskovskogo universiteta. Matematika, mehanika
%D 2016
%P 55-59
%N 6
%U http://geodesic.mathdoc.fr/item/VMUMM_2016_6_a9/
%G ru
%F VMUMM_2016_6_a9
E. Chernsvakaya. Limit theorems for queueing systems with infinite number of servers and group arrival of requests. Vestnik Moskovskogo universiteta. Matematika, mehanika, no. 6 (2016), pp. 55-59. http://geodesic.mathdoc.fr/item/VMUMM_2016_6_a9/

[1] Riordan J., “Telephone traffic time averages”, Bell Labs Technic. J., 30:4 (1951), 1129–1144 | DOI | MR

[2] Takacs L., An introduction to queueing theory, Oxford Univ. Press, N.Y., 1962 | MR

[3] Downton F., “Congestion systems with incomplete service”, J. Roy. Statist. Soc. Ser. B (Methodological), 24:1 (1962), 107–111 | MR

[4] Mirasol N.M., “Letter to the editor — the output of an $M/G/\infty$ queueing system is Poisson”, Oper. Res., 11:2 (1963), 282–284 | DOI | Zbl

[5] Daley D.J., “Queueing output processes”, Adv. Appl. Probab., 8:2 (1976), 395-415 | DOI | MR | Zbl

[6] Borovkov A.A., Stochastic processes in queueing theory, Springer-Verlag, N.Y., 1976 | MR | Zbl

[7] White J.A., Schmidt J.W., Bennet G.K., Analysis of queueing systems, Academic Press, N.Y., 1975 | MR

[8] Kaplan N., “Limit theorems for a $ GI/G/\infty $ Queue”, Ann. Probab., 3:5 (1975), 780–789 | DOI | MR | Zbl

[9] Afanasyeva L.G., Bashtova E.E., “Coupling method for asymptotic analysis of queues with regenerative input and unreliable server”, Queueing Systems, 76:2 (2014), 125–147 | DOI | MR | Zbl

[10] Seneta E., Shiganov I.S., Pravilno menyayuschiesya funktsii, Per. s angl., Nauka, M., 1985 | MR

[11] Nagaev S.V., “Veroyatnostnye neravenstva dlya summ nezavisimykh sluchainykh velichin so znacheniyami v banakhovom prostranstve”, Sib. matem. zhurn., 28:4 (1987), 171–184 | MR | Zbl

[12] Maurer A., “A bound on the deviation probability for sums of non-negative random variables”, J. Ineq. Pure and Appl. Math., 4:1 (2003), 15 | MR | Zbl