Estimation of the attainability set for a linear system based on a linear matrix inequality
Vestnik Moskovskogo universiteta. Matematika, mehanika, no. 6 (2016), pp. 51-55 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

The problem considered is the construction of reachability set's internal approximation for a full controllable linear time-invariant system. This approximation is obtained as an intersection of two areas governed by quadratic forms. One of these forms is based on parameters of the system under consideration. The other form is produced by the solution of some linear matrix inequality. The method proposed is illustrated by a numerical example.
@article{VMUMM_2016_6_a8,
     author = {D. I. Bugrov},
     title = {Estimation of the attainability set for a linear system based on a linear matrix inequality},
     journal = {Vestnik Moskovskogo universiteta. Matematika, mehanika},
     pages = {51--55},
     year = {2016},
     number = {6},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/VMUMM_2016_6_a8/}
}
TY  - JOUR
AU  - D. I. Bugrov
TI  - Estimation of the attainability set for a linear system based on a linear matrix inequality
JO  - Vestnik Moskovskogo universiteta. Matematika, mehanika
PY  - 2016
SP  - 51
EP  - 55
IS  - 6
UR  - http://geodesic.mathdoc.fr/item/VMUMM_2016_6_a8/
LA  - ru
ID  - VMUMM_2016_6_a8
ER  - 
%0 Journal Article
%A D. I. Bugrov
%T Estimation of the attainability set for a linear system based on a linear matrix inequality
%J Vestnik Moskovskogo universiteta. Matematika, mehanika
%D 2016
%P 51-55
%N 6
%U http://geodesic.mathdoc.fr/item/VMUMM_2016_6_a8/
%G ru
%F VMUMM_2016_6_a8
D. I. Bugrov. Estimation of the attainability set for a linear system based on a linear matrix inequality. Vestnik Moskovskogo universiteta. Matematika, mehanika, no. 6 (2016), pp. 51-55. http://geodesic.mathdoc.fr/item/VMUMM_2016_6_a8/

[1] Polyak B.T., Scherbakov P.S., Robastnaya ustoichivost i upravlenie, Nauka, M., 2002

[2] Alexandrov V.V., Bugrov D.I., Corona Morales G., Tikhonova K.V., “Tent-method application for minmax stabilization and maxmin testing”, IMA J. Math. Control and Inform., 2015 | DOI | MR

[3] Sadovnichiy V.A., Alexandrov V.V., Lemak S.S., Bugrov D.I., Tikhonova K.V., Temoltzi Avila R., “Robust stability, minimax stabilization and maximin testing in problems of semi-automatic control”, Stud. Systems. Decision and Control, 30 (2015), 247–265 | DOI | MR | Zbl

[4] Lemak S.S., “K voprosu o formirovanii pozitsionnykh strategii differentsialnoi igry v metode ekstremalnogo pritselivaniya N. N. Krasovskogo”, Vestn. Mosk. un-ta. Matem. Mekhan., 2015, no. 6, 61–65 | Zbl

[5] Formalskii A.M., Upravlyaemost i ustoichivost sistem s ogranichennymi resursami, Nauka, M., 1974 | MR

[6] Chernousko F.L., Otsenivanie fazovogo sostoyaniya dinamicheskikh sistem. Metod ellipsoidov, Nauka, M., 1988 | MR

[7] Kurzhanski A., Valui I., Ellipsoidal calculus for estimation and control, Birkhäuser, Basel, 1997 | MR | Zbl

[8] Ovseevich A.I., Oblasti dostizhimosti upravlyaemykh sistem, ikh svoistva, approksimatsii i primeneniya, Dokt. dis., M., 1996

[9] Aleksandrov V.V., Aleksandrova O.V., Prikhodko I.P., Temoltzi-Auila R., “O sinteze avtokolebanii”, Vestn. Mosk. un-ta. Matem. Mekhan., 2007, no. 3, 41–43 | Zbl