Properties of a nonlinear Maxwell-type model of viscoelasticity with two material functions
Vestnik Moskovskogo universiteta. Matematika, mehanika, no. 6 (2016), pp. 36-41 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

General equations and qualitative properties of basic quasi-static theoretic curves (i.e., stress-strain curves at constant strain or stress rates, relaxation, creep and recovery curves) generated by the nonlinear Maxwell-type constitutive equation with two arbitrary material functions are studied analytically (in uniaxial case). The goal is to reveal the model abilities to describe the set of basic rheological phenomena pertaining to viscoelastoplastic materials (e.g., superplasticity effect) and to find out convenient indicators marking the field of applicability or non-applicability of the model. The minimal set of general restrictions that should be imposed on material functions to provide an adequate description of typical test curves of viscoelastoplastic materials is revealed.
@article{VMUMM_2016_6_a5,
     author = {A. V. Khokhlov},
     title = {Properties of a nonlinear {Maxwell-type} model of viscoelasticity with two material functions},
     journal = {Vestnik Moskovskogo universiteta. Matematika, mehanika},
     pages = {36--41},
     year = {2016},
     number = {6},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/VMUMM_2016_6_a5/}
}
TY  - JOUR
AU  - A. V. Khokhlov
TI  - Properties of a nonlinear Maxwell-type model of viscoelasticity with two material functions
JO  - Vestnik Moskovskogo universiteta. Matematika, mehanika
PY  - 2016
SP  - 36
EP  - 41
IS  - 6
UR  - http://geodesic.mathdoc.fr/item/VMUMM_2016_6_a5/
LA  - ru
ID  - VMUMM_2016_6_a5
ER  - 
%0 Journal Article
%A A. V. Khokhlov
%T Properties of a nonlinear Maxwell-type model of viscoelasticity with two material functions
%J Vestnik Moskovskogo universiteta. Matematika, mehanika
%D 2016
%P 36-41
%N 6
%U http://geodesic.mathdoc.fr/item/VMUMM_2016_6_a5/
%G ru
%F VMUMM_2016_6_a5
A. V. Khokhlov. Properties of a nonlinear Maxwell-type model of viscoelasticity with two material functions. Vestnik Moskovskogo universiteta. Matematika, mehanika, no. 6 (2016), pp. 36-41. http://geodesic.mathdoc.fr/item/VMUMM_2016_6_a5/

[1] Coleman B.D., Makrovitz A., Noll W., Viscometric flows of non-Newtonian fluids. Theory and experiment, Springer, Berlin–Heidelberg–N.Y., 1966 | MR

[2] Ilyushin A.A., Ogibalov P.M., “Nekotoroe obobschenie modelei Foigta i Maksvella”, Mekhanika polimerov, 1966, no. 2, 190–196

[3] Ilyushin A.A., Pobedrya B.E., Osnovy matematicheskoi teorii termovyazkouprugosti, Nauka, M., 1970 | MR

[4] Pobedrya B.E., “Matematicheskaya teoriya nelineinoi vyazkouprugosti”, Uprugost i neuprugost, 3, Izd-vo MGU, M., 1973, 95–173

[5] Gorodtsov V.A., Leonov A.I., “O kinematike, neravnovesnoi termodinamike i reologicheskikh sootnosheniyakh v nelineinoi teorii vyazkouprugosti”, Prikl. matem. i mekhan., 32:1 (1968), 70–94 | Zbl

[6] Leonov A.I., “Non-equilibrium thermodynamics and rheology of viscoelastic polymer media”, Rheol. Acta, 15 (1976), 85–98 | DOI | Zbl

[7] Palmov V.A., “Reologicheskie modeli v nelineinoi mekhanike deformiruemykh tel”, Uspekhi mekhaniki, 3:3 (1980), 75–115 | MR

[8] Prokunin A.N., “O nelineinykh opredelyayuschikh sootnosheniyakh maksvellovskogo tipa dlya opisaniya dvizheniya polimernykh zhidkostei”, Prikl. matem. i mekhan., 48:6 (1984), 957–965 | MR | Zbl

[9] Larson R.G., Constitutive Equations for Polymer Melts and Solutions, Butterworth, Boston, 1988

[10] Leonov A.I., “Constitutive equations for viscoelastic liquids: Formulation, analysis and comparison with data”, Rheol. Ser., 8 (1999), 519–575 | DOI

[11] Kaibyshev O.A., Sverkhplastichnost promyshlennykh splavov, Metallurgiya, M., 1984

[12] Vasin R.A., Enikeev F.U., Vvedenie v mekhaniku sverkhplastichnosti, Gilem, Ufa, 1998

[13] Rabotnov Yu.N., Polzuchest elementov konstruktsii, Nauka, M., 1966

[14] Malinin N.N., Raschety na polzuchest elementov mashinostroitelnykh konstruktsii, Mashinostroenie, M., 1981

[15] Naumenko K., Altenbach H., Gorash Y., “Creep analysis with a stress range dependent constitutive model”, Arch. Appl. Mech., 79 (2009), 619–630 | DOI | Zbl

[16] Lu L.-Y., Linb G.-L., Shihn M.-H., “An experimental study on a generalized Maxwell model for nonlinear viscoelastic dampers used in seismic isolation”, Eng. Struct., 34:1 (2012), 111–123

[17] Khokhlov A.V., Nelineinye modeli vyazkouprugosti tipa Maksvella. Osobennosti ikh povedeniya, skorostnaya chuvstvitelnost i vozmozhnost ispolzovaniya dlya opisaniya polzuchesti i sverkhplastichnosti materialov, Otchet No5193, NII mekhaniki MGU im. Lomonosova, M., 2013

[18] Khokhlov A.V., “Opredelyayuschee sootnoshenie dlya reologicheskikh protsessov: svoistva teoreticheskikh krivykh polzuchesti i modelirovanie zatukhaniya pamyati”, Izv. RAN. Mekhan. tverdogo tela, 2007, no. 2, 147–166 | MR

[19] Khokhlov A.V., “Opredelyayuschee sootnoshenie dlya reologicheskikh protsessov c izvestnoi istoriei nagruzheniya. Krivye polzuchesti i dlitelnoi prochnosti”, Izv. RAN. Mekhan. tverdogo tela, 2008, no. 2, 140–160

[20] Khokhlov A.V., “Kharakternye osobennosti semeistv krivykh deformirovaniya lineinykh modelei vyazkouprugosti”, Problemy prochnosti i plastichnosti, 77:2 (2015), 139–154

[21] Khokhlov A.V., “Svoistva semeistv krivykh polzuchesti pri stupenchatom nagruzhenii lineinogo opredelyayuschego sootnosheniya vyazkouprugosti”, Problemy prochnosti i plastichnosti, 77:4 (2015), 329–344