Application of an asymptotic homogenization method for determining the widening coefficient of a water-saturated porous medium under freezing
Vestnik Moskovskogo universiteta. Matematika, mehanika, no. 6 (2016), pp. 32-36 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

The paper presents an asymptotic method for determining the expansion of a porous medium filled with a liquid during its freezing. A closed-form formula for the expansion coefficient is derived in the case of open pores. For enclosed pores, the coefficient is a second-order tensor in general. Its determination requires to solve the so-called local problems in the representative domain. The resulting technique can be used to determine the effective expansion coefficient in the case of freezing water in the soil. The proposed method is demonstrated using model and realistic geological structures.
@article{VMUMM_2016_6_a4,
     author = {S. V. Sheshenin and B. P. Lazarev and N. B. Artamonova},
     title = {Application of an asymptotic homogenization method for determining the widening coefficient of a water-saturated porous medium under freezing},
     journal = {Vestnik Moskovskogo universiteta. Matematika, mehanika},
     pages = {32--36},
     year = {2016},
     number = {6},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/VMUMM_2016_6_a4/}
}
TY  - JOUR
AU  - S. V. Sheshenin
AU  - B. P. Lazarev
AU  - N. B. Artamonova
TI  - Application of an asymptotic homogenization method for determining the widening coefficient of a water-saturated porous medium under freezing
JO  - Vestnik Moskovskogo universiteta. Matematika, mehanika
PY  - 2016
SP  - 32
EP  - 36
IS  - 6
UR  - http://geodesic.mathdoc.fr/item/VMUMM_2016_6_a4/
LA  - ru
ID  - VMUMM_2016_6_a4
ER  - 
%0 Journal Article
%A S. V. Sheshenin
%A B. P. Lazarev
%A N. B. Artamonova
%T Application of an asymptotic homogenization method for determining the widening coefficient of a water-saturated porous medium under freezing
%J Vestnik Moskovskogo universiteta. Matematika, mehanika
%D 2016
%P 32-36
%N 6
%U http://geodesic.mathdoc.fr/item/VMUMM_2016_6_a4/
%G ru
%F VMUMM_2016_6_a4
S. V. Sheshenin; B. P. Lazarev; N. B. Artamonova. Application of an asymptotic homogenization method for determining the widening coefficient of a water-saturated porous medium under freezing. Vestnik Moskovskogo universiteta. Matematika, mehanika, no. 6 (2016), pp. 32-36. http://geodesic.mathdoc.fr/item/VMUMM_2016_6_a4/

[1] Komarov I.A., Termodinamika i teplomassoobmen v dispersnykh merzlykh porodakh, Nauchnyi mir, M., 2003

[2] Pobedrya B.E., Mekhanika kompozitsionnykh materialov, Izd-vo MGU, M., 1984

[3] Bakhvalov N.S., Panasenko G.P., Osrednenie protsessov v periodicheskikh sredakh, Nauka, M., 1984 | MR

[4] Sheshenin S.V., Artamonova N.B., Mukatova A.Zh., “Primenenie metoda osredneniya dlya opredeleniya koeffitsienta peredachi porovogo davleniya”, Vestn. Mosk. un-ta. Matem. Mekhan., 2015, no. 2, 42–45

[5] Sheshenin S.V., Artamonova N.B., Frolova Yu.V., Ladygin V.M., “Opredelenie uprugikh svoistv i tenzora peredachi porovogo davleniya gornykh porod metodom osredneniya”, Vestn. Mosk. un-ta. Geologiya, 2015, no. 4, 90–97

[6] Makarova I.A., Lokhova N.A., Fiziko-khimicheskie metody issledovaniya stroitelnykh materialov, Izd-vo Bratsk. gos. un-ta, Bratsk, 2011

[7] Frolova Yu.V., Ladygin V.M., “Petrofizicheskie preobrazovaniya porod Mutnovskogo vulkanicheskogo raiona $($Yuzhnaya Kamchatka$)$ pod vozdeistviem gidrotermalnykh protsessov”, Vestn. KRAUNTs. Ser. Nauki o Zemle, 2008, no. 1(11), 158–170