Closed geodesics on piecewise smooth constant curvature surfaces of revolution
Vestnik Moskovskogo universiteta. Matematika, mehanika, no. 6 (2016), pp. 25-31

Voir la notice de l'article provenant de la source Math-Net.Ru

The paper develops a study of closed geodesics on piecewise smooth surfaces of revolution of constant curvature initiated by I. V. Sypchenko and D. S. Timonina. This paper analyzes the case of constant negative curvature. We consider closed geodesics on a surface formed as a union of two Beltrami surfaces. All closed geodesics without self-intersections are found and tested for the stability in a certain finite-dimensional class of perturbations. Conjugate points are found partly.
@article{VMUMM_2016_6_a3,
     author = {R. K. Klimov},
     title = {Closed geodesics on piecewise smooth constant curvature surfaces of revolution},
     journal = {Vestnik Moskovskogo universiteta. Matematika, mehanika},
     pages = {25--31},
     publisher = {mathdoc},
     number = {6},
     year = {2016},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/VMUMM_2016_6_a3/}
}
TY  - JOUR
AU  - R. K. Klimov
TI  - Closed geodesics on piecewise smooth constant curvature surfaces of revolution
JO  - Vestnik Moskovskogo universiteta. Matematika, mehanika
PY  - 2016
SP  - 25
EP  - 31
IS  - 6
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/VMUMM_2016_6_a3/
LA  - ru
ID  - VMUMM_2016_6_a3
ER  - 
%0 Journal Article
%A R. K. Klimov
%T Closed geodesics on piecewise smooth constant curvature surfaces of revolution
%J Vestnik Moskovskogo universiteta. Matematika, mehanika
%D 2016
%P 25-31
%N 6
%I mathdoc
%U http://geodesic.mathdoc.fr/item/VMUMM_2016_6_a3/
%G ru
%F VMUMM_2016_6_a3
R. K. Klimov. Closed geodesics on piecewise smooth constant curvature surfaces of revolution. Vestnik Moskovskogo universiteta. Matematika, mehanika, no. 6 (2016), pp. 25-31. http://geodesic.mathdoc.fr/item/VMUMM_2016_6_a3/