Closed geodesics on piecewise smooth constant curvature surfaces of revolution
    
    
  
  
  
      
      
      
        
Vestnik Moskovskogo universiteta. Matematika, mehanika, no. 6 (2016), pp. 25-31
    
  
  
  
  
  
    
      
      
        
      
      
      
    Voir la notice de l'article provenant de la source Math-Net.Ru
            
              			The paper develops a study of closed geodesics on piecewise smooth surfaces of revolution of constant curvature initiated by I. V. Sypchenko and D. S. Timonina. This paper analyzes the case of constant negative curvature. We consider closed geodesics on a surface formed as a union of two Beltrami surfaces. All closed geodesics without self-intersections are found and tested for the stability in a certain finite-dimensional class of perturbations. Conjugate points are found partly.
			
            
            
            
          
        
      @article{VMUMM_2016_6_a3,
     author = {R. K. Klimov},
     title = {Closed geodesics on piecewise smooth constant curvature surfaces of revolution},
     journal = {Vestnik Moskovskogo universiteta. Matematika, mehanika},
     pages = {25--31},
     publisher = {mathdoc},
     number = {6},
     year = {2016},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/VMUMM_2016_6_a3/}
}
                      
                      
                    TY - JOUR AU - R. K. Klimov TI - Closed geodesics on piecewise smooth constant curvature surfaces of revolution JO - Vestnik Moskovskogo universiteta. Matematika, mehanika PY - 2016 SP - 25 EP - 31 IS - 6 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/VMUMM_2016_6_a3/ LA - ru ID - VMUMM_2016_6_a3 ER -
R. K. Klimov. Closed geodesics on piecewise smooth constant curvature surfaces of revolution. Vestnik Moskovskogo universiteta. Matematika, mehanika, no. 6 (2016), pp. 25-31. http://geodesic.mathdoc.fr/item/VMUMM_2016_6_a3/
