Height atoms whose symmetry groups act transitively on their vertex sets
Vestnik Moskovskogo universiteta. Matematika, mehanika, no. 6 (2016), pp. 17-25 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

A complete classification of vertical atoms whose symmetry groups act transitively on the vertices of the atoms is obtained.
@article{VMUMM_2016_6_a2,
     author = {I. M. Nikonov},
     title = {Height atoms whose symmetry groups act transitively on their vertex sets},
     journal = {Vestnik Moskovskogo universiteta. Matematika, mehanika},
     pages = {17--25},
     year = {2016},
     number = {6},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/VMUMM_2016_6_a2/}
}
TY  - JOUR
AU  - I. M. Nikonov
TI  - Height atoms whose symmetry groups act transitively on their vertex sets
JO  - Vestnik Moskovskogo universiteta. Matematika, mehanika
PY  - 2016
SP  - 17
EP  - 25
IS  - 6
UR  - http://geodesic.mathdoc.fr/item/VMUMM_2016_6_a2/
LA  - ru
ID  - VMUMM_2016_6_a2
ER  - 
%0 Journal Article
%A I. M. Nikonov
%T Height atoms whose symmetry groups act transitively on their vertex sets
%J Vestnik Moskovskogo universiteta. Matematika, mehanika
%D 2016
%P 17-25
%N 6
%U http://geodesic.mathdoc.fr/item/VMUMM_2016_6_a2/
%G ru
%F VMUMM_2016_6_a2
I. M. Nikonov. Height atoms whose symmetry groups act transitively on their vertex sets. Vestnik Moskovskogo universiteta. Matematika, mehanika, no. 6 (2016), pp. 17-25. http://geodesic.mathdoc.fr/item/VMUMM_2016_6_a2/

[1] Bolsinov A.V., Fomenko A.T., Integriruemye gamiltonovy sistemy, v. 1, Izd. dom “Udmurtskii universitet”, Izhevsk, 1999 | MR

[2] Manturov V.O., “Bifurkatsii, atomy i uzly”, Vestn. Mosk. un-ta. Matem. Mekhan., 2000, no. 1, 3–8 | Zbl

[3] Fomenko A.T., “Topologiya poverkhnostei postoyannoi energii integriruemykh gamiltonovykh sistem i prepyatstviya k integriruemosti”, Izv. AN SSSR. Ser. matem., 50:6 (1986), 1276–1307 | MR | Zbl

[4] Fomenko A.T., “Topologicheskie invarianty gamiltonovykh sistem, integriruemykh po Liuvillyu”, Funkts. analiz i ego pril., 22:4 (1988), 38–51 | MR | Zbl

[5] Fomenko A.T., “Simplekticheskaya topologiya vpolne integriruemykh gamiltonovykh sistem”, Uspekhi matem. nauk, 44:1 (1989), 145–173 | MR

[6] Fomenko A.T., “Teoriya bordizmov integriruemykh gamiltonovykh nevyrozhdennykh sistem s dvumya stepenyami svobody. Novyi topologicheskii invariant mnogomernykh integriruemykh sistem”, Izv. AN SSSR. Ser. matem., 55:4 (1990), 747–779

[7] Fomenko A.T., “Topologicheskii invariant, grubo klassifitsiruyuschii integriruemye strogo nevyrozhdennye gamiltoniany na chetyrekhmernykh simplekticheskikh mnogoobraziyakh”, Funkts. analiz i ego pril., 25:4 (1991), 23–35 | MR

[8] Fomenko A.T., Tsishang Kh., “Topologicheskii invariant i kriterii ekvivalentnosti integriruemykh gamiltonovykh sistem s dvumya stepenyami svobody”, Izv. AN SSSR. Ser. matem., 54:3 (1990), 546–575 | Zbl

[9] Ilyutko D.P., Manturov V.O., Virtual knots: the state of the art, Series on knots and everything, 51, World Scientific, Singapore, 2012 | MR

[10] Kudryavtseva E.A., Nikonov I.M., Fomenko A.T., “Maksimalno simmetrichnye kletochnye razbieniya poverkhnostei i ikh nakrytiya”, Matem. sb., 199:9 (2008), 3–96 | DOI | MR | Zbl

[11] Kudryavtseva E.A., Nikonov I.M., Fomenko A.T., “Simmetrichnye i neprivodimye abstraktnye mnogogranniki”, Sovremennye problemy matematiki i mekhaniki, 2009, 58–97, Izd-vo MGU, M. | MR

[12] Volchanetskii N.V., Nikonov I.M., “Maksimalno simmetrichnye vysotnye atomy”, Vestn. Mosk. un-ta. Matem. Mekhan., 2013, no. 2, 3–6 | MR | Zbl

[13] Oshemkov A.A., “Funktsii Morsa na dvumernykh poverkhnostyakh. Kodirovanie osobennostei”, Tr. Matem. in-ta RAN im. V. A. Steklova, Nauka, M., 1994, 131–140