Proper $\mathrm{T}$-ideals of Poisson algebras with extreme properties
    
    
  
  
  
      
      
      
        
Vestnik Moskovskogo universiteta. Matematika, mehanika, no. 6 (2016), pp. 8-16
    
  
  
  
  
  
    
      
      
        
      
      
      
    Voir la notice de l'article provenant de la source Math-Net.Ru
            
              			Let $\{\gamma_n(\mathbf{V})\}_{n\ge1}$ be the sequence of proper codimensions of a variety $\mathbf{V}$ of Poisson algebras over a field of characteristic zero. A class of minimal varieties of Poisson algebras of polynomial growth of the sequence $\{\gamma_n(\mathbf{V})\}_{n\ge1}$ is presented, i.e. the sequence $\{\gamma_n(\mathbf{V})\}_{n\ge1}$ of any such variety $\mathbf{V}$ grows as a polynomial of some degree $k$, but the sequence $\{\gamma_n(\mathbf{W})\}_{n\ge1}$ of any proper subvariety $\mathbf{W}$ in $\mathbf{V}$ grows as a polynomial of degree strictly less than $k$.
			
            
            
            
          
        
      @article{VMUMM_2016_6_a1,
     author = {S. M. Ratseev},
     title = {Proper $\mathrm{T}$-ideals of {Poisson} algebras with extreme properties},
     journal = {Vestnik Moskovskogo universiteta. Matematika, mehanika},
     pages = {8--16},
     publisher = {mathdoc},
     number = {6},
     year = {2016},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/VMUMM_2016_6_a1/}
}
                      
                      
                    S. M. Ratseev. Proper $\mathrm{T}$-ideals of Poisson algebras with extreme properties. Vestnik Moskovskogo universiteta. Matematika, mehanika, no. 6 (2016), pp. 8-16. http://geodesic.mathdoc.fr/item/VMUMM_2016_6_a1/
                  
                