@article{VMUMM_2016_6_a1,
author = {S. M. Ratseev},
title = {Proper $\mathrm{T}$-ideals of {Poisson} algebras with extreme properties},
journal = {Vestnik Moskovskogo universiteta. Matematika, mehanika},
pages = {8--16},
year = {2016},
number = {6},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/VMUMM_2016_6_a1/}
}
S. M. Ratseev. Proper $\mathrm{T}$-ideals of Poisson algebras with extreme properties. Vestnik Moskovskogo universiteta. Matematika, mehanika, no. 6 (2016), pp. 8-16. http://geodesic.mathdoc.fr/item/VMUMM_2016_6_a1/
[1] Bakhturin Yu.A., Tozhdestva v algebrakh Li, Nauka, M., 1985 | MR
[2] Giambruno A., Zaicev M.V., Polynomial identities and asymptotic methods, AMS Math. Surveys and Monogr., 122, Providence R.I., 2005 | DOI | MR | Zbl
[3] Ratseev S.M., “Algebry Puassona polinomialnogo rosta”, Sib. matem. zhurn., 54:3 (2013), 700–711 | MR | Zbl
[4] Mishchenko S.P., Petrogradsky V.M., Regev A., “Poisson PI algebras”, Trans. Amer. Math. Soc., 359:10 (2007), 4669–4694 | DOI | MR | Zbl
[5] Ratseev S.M., “Ekvivalentnye usloviya polinomialnosti rosta mnogoobrazii algebr Puassona”, Vestn. Mosk. un-ta. Matem. Mekhan., 67:5 (2012), 8–13 | MR | Zbl
[6] Volichenko I.B., “Ob odnom mnogoobrazii algebr Li, svyazannom so standartnymi tozhdestvami”, Vestsi AN BSSR: Ser. fiz.-matem. nauk., 1980, no. 1, 23–30 | MR | Zbl
[7] Mattina D.La., “Varieties of almost polynomial growth: classifying their subvarieties”, Manuscripta Math., 123:2 (2007), 185–203 | DOI | MR | Zbl