Orbits of the automorphism group of a module over a principal ideal ring
    
    
  
  
  
      
      
      
        
Vestnik Moskovskogo universiteta. Matematika, mehanika, no. 5 (2016), pp. 37-40
    
  
  
  
  
  
    
      
      
        
      
      
      
    Voir la notice de l'article provenant de la source Math-Net.Ru
            
              			We describe the orbits of the automorphism group of a finitely generated module over a principal ideal domain in terms of canonical representatives and by a complete system of invariants. For a primary module, we establish a natural bijection between the set of orbits and the set of partitions of the Young diagram corresponding to the module into two Young diagrams, which allows us to determine the number of orbits.
			
            
            
            
          
        
      @article{VMUMM_2016_5_a5,
     author = {A. A. Garazha},
     title = {Orbits of the automorphism group of a module over a principal ideal ring},
     journal = {Vestnik Moskovskogo universiteta. Matematika, mehanika},
     pages = {37--40},
     publisher = {mathdoc},
     number = {5},
     year = {2016},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/VMUMM_2016_5_a5/}
}
                      
                      
                    TY - JOUR AU - A. A. Garazha TI - Orbits of the automorphism group of a module over a principal ideal ring JO - Vestnik Moskovskogo universiteta. Matematika, mehanika PY - 2016 SP - 37 EP - 40 IS - 5 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/VMUMM_2016_5_a5/ LA - ru ID - VMUMM_2016_5_a5 ER -
A. A. Garazha. Orbits of the automorphism group of a module over a principal ideal ring. Vestnik Moskovskogo universiteta. Matematika, mehanika, no. 5 (2016), pp. 37-40. http://geodesic.mathdoc.fr/item/VMUMM_2016_5_a5/
