Perturbed stable systems on a plane. I
Vestnik Moskovskogo universiteta. Matematika, mehanika, no. 5 (2016), pp. 30-36 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

The possibility of extending the concept of rough dynamical systems in the presence of the permanent perturbation defined up to a functional set in the space of piecewise continuous functions is considered. The constructability of extension is achieved by the construction of limit cycles giving an estimate of the attainability set for oscillating systems.
@article{VMUMM_2016_5_a4,
     author = {V. V. Aleksandrov and O. V. Aleksandrova and I. S. Konovalenko and K. V. Tikhonova},
     title = {Perturbed stable systems on a {plane.~I}},
     journal = {Vestnik Moskovskogo universiteta. Matematika, mehanika},
     pages = {30--36},
     year = {2016},
     number = {5},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/VMUMM_2016_5_a4/}
}
TY  - JOUR
AU  - V. V. Aleksandrov
AU  - O. V. Aleksandrova
AU  - I. S. Konovalenko
AU  - K. V. Tikhonova
TI  - Perturbed stable systems on a plane. I
JO  - Vestnik Moskovskogo universiteta. Matematika, mehanika
PY  - 2016
SP  - 30
EP  - 36
IS  - 5
UR  - http://geodesic.mathdoc.fr/item/VMUMM_2016_5_a4/
LA  - ru
ID  - VMUMM_2016_5_a4
ER  - 
%0 Journal Article
%A V. V. Aleksandrov
%A O. V. Aleksandrova
%A I. S. Konovalenko
%A K. V. Tikhonova
%T Perturbed stable systems on a plane. I
%J Vestnik Moskovskogo universiteta. Matematika, mehanika
%D 2016
%P 30-36
%N 5
%U http://geodesic.mathdoc.fr/item/VMUMM_2016_5_a4/
%G ru
%F VMUMM_2016_5_a4
V. V. Aleksandrov; O. V. Aleksandrova; I. S. Konovalenko; K. V. Tikhonova. Perturbed stable systems on a plane. I. Vestnik Moskovskogo universiteta. Matematika, mehanika, no. 5 (2016), pp. 30-36. http://geodesic.mathdoc.fr/item/VMUMM_2016_5_a4/

[1] Shilnikov L.P., Shilnikov A.L., Turaev V.V., Chua L., Metody kachestvennoi teorii v nelineinoi dinamike, v. 2, NITs “Regulyarnaya i khaoticheskaya dinamika”, M.–Izhevsk, 2009

[2] Elsgolts L.E., Differentsialnye uravneniya i differentsialnoe ischislenie, URSS, M., 2000

[3] Polyak B.T., Scherbakov P.S., Robastnaya ustoichivost i upravlenie, Nauka, M., 2002

[4] Aleksandrov V.V., Boltyanskii V.G., Lemak S.S., Parusnikov N.A., Tikhomirov V.M., Optimalnoe upravlenie dvizheniem, Fizmatlit, M., 2005

[5] Zhermolenko V.N., “Predelnye tsikly na fazovoi ploskosti”, Zadacha Bulgakova o maksimalnom otklonenii i ee primenenie, ed. V.V. Aleksandrov, Izd-vo MGU, M., 1993

[6] Aleksandrov V.V., Reies-Romero M., Sidorenko G.Yu., Temoltzi-Avila R., “Ustoichivost upravlyaemogo perevernutogo mayatnika pri postoyannodeistvuyuschikh gorizontalnykh vozmuscheniyakh tochki opory”, Izv. RAN. Mekhan. tverdogo tela, 2010, no. 2, 41–49 | Zbl

[7] Andronov A.A., Vitt A.A., Khaikin S.E., Teoriya kolebanii, Fizmatlit, M., 1959 | MR

[8] Aleksandrov V.V., Aleksandrova O.V., Prikhodko N.P., Temoltzi-Avila R., “O sinteze avtokolebanii”, Vestn. Mosk. un-ta. Matem. Mekhan., 2007, no. 3, 41–43 | Zbl

[9] Aleksandrov V.V., “K zadache Bulgakova o nakoplenii vozmuschenii”, Dokl. AN SSSR. Ser. Kibernetika, 186:3 (1969), 70–73