A condition for almost everywhere convergence of orthorecursive expansions
Vestnik Moskovskogo universiteta. Matematika, mehanika, no. 5 (2016), pp. 20-25 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

An almost everywhere convergence condition with Weyl multiplier $W(n)=\sqrt n$ is obtained for orthorecursive expansions that converge to the expanded fuinction in $L^2$.
@article{VMUMM_2016_5_a2,
     author = {V. V. Galatenko and T. P. Lukashenko and V. A. Sadovnichii},
     title = {A condition for almost everywhere convergence of orthorecursive expansions},
     journal = {Vestnik Moskovskogo universiteta. Matematika, mehanika},
     pages = {20--25},
     year = {2016},
     number = {5},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/VMUMM_2016_5_a2/}
}
TY  - JOUR
AU  - V. V. Galatenko
AU  - T. P. Lukashenko
AU  - V. A. Sadovnichii
TI  - A condition for almost everywhere convergence of orthorecursive expansions
JO  - Vestnik Moskovskogo universiteta. Matematika, mehanika
PY  - 2016
SP  - 20
EP  - 25
IS  - 5
UR  - http://geodesic.mathdoc.fr/item/VMUMM_2016_5_a2/
LA  - ru
ID  - VMUMM_2016_5_a2
ER  - 
%0 Journal Article
%A V. V. Galatenko
%A T. P. Lukashenko
%A V. A. Sadovnichii
%T A condition for almost everywhere convergence of orthorecursive expansions
%J Vestnik Moskovskogo universiteta. Matematika, mehanika
%D 2016
%P 20-25
%N 5
%U http://geodesic.mathdoc.fr/item/VMUMM_2016_5_a2/
%G ru
%F VMUMM_2016_5_a2
V. V. Galatenko; T. P. Lukashenko; V. A. Sadovnichii. A condition for almost everywhere convergence of orthorecursive expansions. Vestnik Moskovskogo universiteta. Matematika, mehanika, no. 5 (2016), pp. 20-25. http://geodesic.mathdoc.fr/item/VMUMM_2016_5_a2/

[1] Lukashenko T.P., “Rekursivnye razlozheniya, podobnye ortogonalnym”, VII Mezhdunar. konf. “Matematika. Ekonomika. Ekologiya. Obrazovanie”. Mezhdunar. simpozium “Ryady Fure i ikh prilozheniya”, Tez. dokl. (26 maya–1 iyunya 1999 g., Rostov n/D), RGEA, Rostov n/D, 1999, 331

[2] Lukashenko T.P., “Ob ortorekursivnykh razlozheniyakh po kharakteristicheskim funktsiyam promezhutkov”, Teoriya funktsii, ee prilozheniya i smezhnye voprosy, Mat-ly shkoly-konf., posv. 130-letiyu so dnya rozhdeniya D. F. Egorova, Izd-vo Kazan. mat. o-va, Kazan, 1999, 142–143

[3] Lukashenko T.P., “O svoistvakh ortorekursivnykh razlozhenii po neortogonalnym sistemam”, Vestn. Mosk. un-ta. Matem. Mekhan., 2001, no. 1, 6–10 | Zbl

[4] Lukashenko T.P., Sadovnichii V.A., “Ortorekursivnye razlozheniya po podprostranstvam”, Dokl. RAN, 445:2 (2012), 135–138 | MR | Zbl

[5] Lukashenko T.P., Sadovnichii V.A., “O rekursivnykh razlozheniyakh po tsepochke sistem”, Dokl. RAN, 425:6 (2009), 1–6

[6] Bogachev V.I., Smolyanov O.G., Deistvitelnyi i funktsionalnyi analiz, Universitetskii kurs, NITs RKhD, M.–Izhevsk, 2009

[7] Kolmogorov A.N., Fomin S.V., Elementy teorii funktsii i funktsionalnogo analiza, Fizmatlit, M., 2004 | MR

[8] Kashin B.S., Saakyan A.A., Ortogonalnye ryady, Izd-vo AFTs, M., 1999 | MR

[9] Kachmazh S., Shteingauz G., Teoriya ortogonalnykh ryadov, GIFML, M., 1958 | MR

[10] Aleksich G., Problemy skhodimosti ortogonalnykh ryadov, Nauka, M., 1984 | MR

[11] Galatenko V.V., Lukashenko T.P., Sadovnichii V.A., “Ob uslovii skhodimosti ortorekursivnykh razlozhenii funktsii pochti vsyudu”, Teoriya funktsii, ee prilozheniya i smezhnye voprosy, Mat-ly Dvenadtsatoi mezhdunar. Kazanskoi letnei nauchnoi shkoly-konf. (Kazan, 27 iyunya–4 iyulya 2015 g.), Tr. Matem. tsentra im. N. I. Lobachevskogo, 51, 2015, 135–141