A condition for almost everywhere convergence of orthorecursive expansions
Vestnik Moskovskogo universiteta. Matematika, mehanika, no. 5 (2016), pp. 20-25

Voir la notice de l'article provenant de la source Math-Net.Ru

An almost everywhere convergence condition with Weyl multiplier $W(n)=\sqrt n$ is obtained for orthorecursive expansions that converge to the expanded fuinction in $L^2$.
@article{VMUMM_2016_5_a2,
     author = {V. V. Galatenko and T. P. Lukashenko and V. A. Sadovnichii},
     title = {A condition for almost everywhere convergence of orthorecursive expansions},
     journal = {Vestnik Moskovskogo universiteta. Matematika, mehanika},
     pages = {20--25},
     publisher = {mathdoc},
     number = {5},
     year = {2016},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/VMUMM_2016_5_a2/}
}
TY  - JOUR
AU  - V. V. Galatenko
AU  - T. P. Lukashenko
AU  - V. A. Sadovnichii
TI  - A condition for almost everywhere convergence of orthorecursive expansions
JO  - Vestnik Moskovskogo universiteta. Matematika, mehanika
PY  - 2016
SP  - 20
EP  - 25
IS  - 5
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/VMUMM_2016_5_a2/
LA  - ru
ID  - VMUMM_2016_5_a2
ER  - 
%0 Journal Article
%A V. V. Galatenko
%A T. P. Lukashenko
%A V. A. Sadovnichii
%T A condition for almost everywhere convergence of orthorecursive expansions
%J Vestnik Moskovskogo universiteta. Matematika, mehanika
%D 2016
%P 20-25
%N 5
%I mathdoc
%U http://geodesic.mathdoc.fr/item/VMUMM_2016_5_a2/
%G ru
%F VMUMM_2016_5_a2
V. V. Galatenko; T. P. Lukashenko; V. A. Sadovnichii. A condition for almost everywhere convergence of orthorecursive expansions. Vestnik Moskovskogo universiteta. Matematika, mehanika, no. 5 (2016), pp. 20-25. http://geodesic.mathdoc.fr/item/VMUMM_2016_5_a2/