Common fixed points of a family of commuting mappings of partially ordered sets
Vestnik Moskovskogo universiteta. Matematika, mehanika, no. 5 (2016), pp. 56-59 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

The paper presents conditions providing the existence of a common fixed point of a family of commuting isotone multivalued mappings of a partially ordered set and the existence of the minimal element in the set of common fixed points. Additional conditions that guarantee the existence of the least element in that point set are also presented. Relations of the obtained results to well-known fixed point theorems are considered.
@article{VMUMM_2016_5_a10,
     author = {D. A. Podoprikhin},
     title = {Common fixed points of a family of commuting mappings of partially ordered sets},
     journal = {Vestnik Moskovskogo universiteta. Matematika, mehanika},
     pages = {56--59},
     year = {2016},
     number = {5},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/VMUMM_2016_5_a10/}
}
TY  - JOUR
AU  - D. A. Podoprikhin
TI  - Common fixed points of a family of commuting mappings of partially ordered sets
JO  - Vestnik Moskovskogo universiteta. Matematika, mehanika
PY  - 2016
SP  - 56
EP  - 59
IS  - 5
UR  - http://geodesic.mathdoc.fr/item/VMUMM_2016_5_a10/
LA  - ru
ID  - VMUMM_2016_5_a10
ER  - 
%0 Journal Article
%A D. A. Podoprikhin
%T Common fixed points of a family of commuting mappings of partially ordered sets
%J Vestnik Moskovskogo universiteta. Matematika, mehanika
%D 2016
%P 56-59
%N 5
%U http://geodesic.mathdoc.fr/item/VMUMM_2016_5_a10/
%G ru
%F VMUMM_2016_5_a10
D. A. Podoprikhin. Common fixed points of a family of commuting mappings of partially ordered sets. Vestnik Moskovskogo universiteta. Matematika, mehanika, no. 5 (2016), pp. 56-59. http://geodesic.mathdoc.fr/item/VMUMM_2016_5_a10/

[1] Reem D., Reich S., “Zone and double zone diagrams in abstract spaces”, Colloq. Math., 115 (2009), 129–145 | DOI | MR | Zbl

[2] Kirk W.A., Sims B., Handbook of metric fixed point theory, Springer Science Business Media, Dordrecht, 2001 | MR

[3] Nadler Jr.S.B., “Multi-valued contraction mappings”, Pacif. J. Math., 30:2 (1969), 475–488 | DOI | MR | Zbl

[4] Smithson R.E., “Fixed points of order preserving multifunctions”, Proc. Amer. Math. Soc., 28 (1971), 304–310 | DOI | MR | Zbl

[5] Kolmogorov A.N., Fomin S.V., Elementy teorii funktsii i funktsionalnogo analiza, Nauka, M., 1972 | MR

[6] Granas A., Dugundji J., Fixed point theory, Springer Science Business Media, N.Y., 2013 | MR

[7] Smithson R., “Fixed points in partially ordered sets”, Pacif. J. Math., 45:1 (1973), 363-367 | DOI | MR | Zbl