Singularities of integrable Hamiltonian systems with the same boundary foliation. An infinite series
Vestnik Moskovskogo universiteta. Matematika, mehanika, no. 5 (2016), pp. 14-20
Voir la notice de l'article provenant de la source Math-Net.Ru
Four-dimensional momentum map singularities of integrable Hamiltonian systems of two degrees of freedom are considered. A construction of an infinite series of pairs of 4-dimensional saddle-saddle singularities is provided so that 4-singularities are not Liouville equivalent in each pair and the 2-foliations on their 3-boundaries are Liouville equivalent.
@article{VMUMM_2016_5_a1,
author = {M. A. Tuzhilin},
title = {Singularities of integrable {Hamiltonian} systems with the same boundary foliation. {An} infinite series},
journal = {Vestnik Moskovskogo universiteta. Matematika, mehanika},
pages = {14--20},
publisher = {mathdoc},
number = {5},
year = {2016},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/VMUMM_2016_5_a1/}
}
TY - JOUR AU - M. A. Tuzhilin TI - Singularities of integrable Hamiltonian systems with the same boundary foliation. An infinite series JO - Vestnik Moskovskogo universiteta. Matematika, mehanika PY - 2016 SP - 14 EP - 20 IS - 5 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/VMUMM_2016_5_a1/ LA - ru ID - VMUMM_2016_5_a1 ER -
%0 Journal Article %A M. A. Tuzhilin %T Singularities of integrable Hamiltonian systems with the same boundary foliation. An infinite series %J Vestnik Moskovskogo universiteta. Matematika, mehanika %D 2016 %P 14-20 %N 5 %I mathdoc %U http://geodesic.mathdoc.fr/item/VMUMM_2016_5_a1/ %G ru %F VMUMM_2016_5_a1
M. A. Tuzhilin. Singularities of integrable Hamiltonian systems with the same boundary foliation. An infinite series. Vestnik Moskovskogo universiteta. Matematika, mehanika, no. 5 (2016), pp. 14-20. http://geodesic.mathdoc.fr/item/VMUMM_2016_5_a1/