Singularities of integrable Hamiltonian systems with the same boundary foliation. An infinite series
Vestnik Moskovskogo universiteta. Matematika, mehanika, no. 5 (2016), pp. 14-20

Voir la notice de l'article provenant de la source Math-Net.Ru

Four-dimensional momentum map singularities of integrable Hamiltonian systems of two degrees of freedom are considered. A construction of an infinite series of pairs of 4-dimensional saddle-saddle singularities is provided so that 4-singularities are not Liouville equivalent in each pair and the 2-foliations on their 3-boundaries are Liouville equivalent.
@article{VMUMM_2016_5_a1,
     author = {M. A. Tuzhilin},
     title = {Singularities of integrable {Hamiltonian} systems with the same boundary foliation. {An} infinite series},
     journal = {Vestnik Moskovskogo universiteta. Matematika, mehanika},
     pages = {14--20},
     publisher = {mathdoc},
     number = {5},
     year = {2016},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/VMUMM_2016_5_a1/}
}
TY  - JOUR
AU  - M. A. Tuzhilin
TI  - Singularities of integrable Hamiltonian systems with the same boundary foliation. An infinite series
JO  - Vestnik Moskovskogo universiteta. Matematika, mehanika
PY  - 2016
SP  - 14
EP  - 20
IS  - 5
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/VMUMM_2016_5_a1/
LA  - ru
ID  - VMUMM_2016_5_a1
ER  - 
%0 Journal Article
%A M. A. Tuzhilin
%T Singularities of integrable Hamiltonian systems with the same boundary foliation. An infinite series
%J Vestnik Moskovskogo universiteta. Matematika, mehanika
%D 2016
%P 14-20
%N 5
%I mathdoc
%U http://geodesic.mathdoc.fr/item/VMUMM_2016_5_a1/
%G ru
%F VMUMM_2016_5_a1
M. A. Tuzhilin. Singularities of integrable Hamiltonian systems with the same boundary foliation. An infinite series. Vestnik Moskovskogo universiteta. Matematika, mehanika, no. 5 (2016), pp. 14-20. http://geodesic.mathdoc.fr/item/VMUMM_2016_5_a1/