@article{VMUMM_2016_4_a8,
author = {A. V. Zarodnyuk and O. Yu. Cherkasov},
title = {Qualitative analysis of the brachistochrone problem with a dry friction and maximization of horizontal distance},
journal = {Vestnik Moskovskogo universiteta. Matematika, mehanika},
pages = {54--59},
year = {2016},
number = {4},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/VMUMM_2016_4_a8/}
}
TY - JOUR AU - A. V. Zarodnyuk AU - O. Yu. Cherkasov TI - Qualitative analysis of the brachistochrone problem with a dry friction and maximization of horizontal distance JO - Vestnik Moskovskogo universiteta. Matematika, mehanika PY - 2016 SP - 54 EP - 59 IS - 4 UR - http://geodesic.mathdoc.fr/item/VMUMM_2016_4_a8/ LA - ru ID - VMUMM_2016_4_a8 ER -
%0 Journal Article %A A. V. Zarodnyuk %A O. Yu. Cherkasov %T Qualitative analysis of the brachistochrone problem with a dry friction and maximization of horizontal distance %J Vestnik Moskovskogo universiteta. Matematika, mehanika %D 2016 %P 54-59 %N 4 %U http://geodesic.mathdoc.fr/item/VMUMM_2016_4_a8/ %G ru %F VMUMM_2016_4_a8
A. V. Zarodnyuk; O. Yu. Cherkasov. Qualitative analysis of the brachistochrone problem with a dry friction and maximization of horizontal distance. Vestnik Moskovskogo universiteta. Matematika, mehanika, no. 4 (2016), pp. 54-59. http://geodesic.mathdoc.fr/item/VMUMM_2016_4_a8/
[1] Sussmann H.J., Willems J.C., “300 years of optimal control: from the brachystochrone to the maximum principle”, IEEE Control Systems Magazine, 17:3 (1997), 32–44 | DOI
[2] Mednikov V.N., Dinamika poleta i pilotirovanie samoletov, Izd-vo VVA, Monino, 1976
[3] Aleksandrov V.V., Voronin L.I., Glazkov Yu.N., Ishlinskii A.Yu., Sadovnichii V.A., Matematicheskie zadachi dinamicheskoi imitatsii aerokosmicheskikh poletov, Izd-vo MGU, M., 1995
[4] Golubev Yu. F., “Brakhistokhrona s treniem”, Izv. RAN. Teoriya i sistemy upravleniya, 2010, no. 5, 41–52 | Zbl
[5] Wensrich C.M., “Evolutionary solutions to the brachistochrone problem with Coulomb friction”, Mech. Res. Communs., 31:2 (2004), 151–159 | DOI | Zbl
[6] Ashby N., Brittin W.E., Love W.F., Wyss W., “Brachistochrone with Coulomb friction”, Amer. J. Phys., 43:10 (1975), 902–905 | DOI | MR
[7] Lipp S.C., “Brachistochrone with Coulomb friction”, SIAM J. Control Optim., 35:2 (1997), 562–584 | DOI | MR | Zbl
[8] Salinic S., Obradovich A., Mitrovic Z., Rusov S., “Brachistochrone with limited reaction of constraint in an arbitrary force field”, Nonlinear Dyn., 69:1 (2012), 211–222 | DOI | MR | Zbl
[9] Cherkasov O.Yu., Zarodnyuk A.V., “Brachistochrone problem with Coulomb friction and viscous drag: qualitative analysis”, Proc. 1st IFAC Conf. on Modelling, Identification and Control of Nonlinear Systems, MICNON 2015 (June 24–26, St. Petersburg), St. Petersburg, 2015, 1028–1033
[10] Zarodnyuk A,V., Cherkasov O.Yu., “K zadache o brakhistokhrone s lineinym vyazkim treniem”, Vestn. Mosk. un-ta. Matem. Mekhan., 2015, no. 3, 65–69 | Zbl
[11] Pontryagin L. S., Boltyanskii V.G., Gamkrelidze R.V., Mischenko E.F., Matematicheskaya teoriya optimalnykh protsessov, Nauka, M., 1983 | MR
[12] Kelley H.J., Kopp R.E., Moyer H.G., “Singular extremal”, Topics in Optimization, ed. G. Leitmann, Academic Press, N.Y.–L., 1967, 63–101 | DOI | MR