Complete systems of monadic predicates for Post classes
Vestnik Moskovskogo universiteta. Matematika, mehanika, no. 4 (2016), pp. 33-38

Voir la notice de l'article provenant de la source Math-Net.Ru

The problem of completeness of arbitrary systems of monadic predicates defined on finite sets is considered. Completeness criteria are obtained for an arbitrary system of monadic predicates over arbitrary set of Boolean functions.
@article{VMUMM_2016_4_a4,
     author = {S. V. Bykovskaya},
     title = {Complete systems of monadic predicates for {Post} classes},
     journal = {Vestnik Moskovskogo universiteta. Matematika, mehanika},
     pages = {33--38},
     publisher = {mathdoc},
     number = {4},
     year = {2016},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/VMUMM_2016_4_a4/}
}
TY  - JOUR
AU  - S. V. Bykovskaya
TI  - Complete systems of monadic predicates for Post classes
JO  - Vestnik Moskovskogo universiteta. Matematika, mehanika
PY  - 2016
SP  - 33
EP  - 38
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/VMUMM_2016_4_a4/
LA  - ru
ID  - VMUMM_2016_4_a4
ER  - 
%0 Journal Article
%A S. V. Bykovskaya
%T Complete systems of monadic predicates for Post classes
%J Vestnik Moskovskogo universiteta. Matematika, mehanika
%D 2016
%P 33-38
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/VMUMM_2016_4_a4/
%G ru
%F VMUMM_2016_4_a4
S. V. Bykovskaya. Complete systems of monadic predicates for Post classes. Vestnik Moskovskogo universiteta. Matematika, mehanika, no. 4 (2016), pp. 33-38. http://geodesic.mathdoc.fr/item/VMUMM_2016_4_a4/