Convergence of products of operator orientations
Vestnik Moskovskogo universiteta. Matematika, mehanika, no. 4 (2016), pp. 23-33 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

The paper deals with the generalizations of Jessen–Marzinkevich–Zygmund theorem on differentiation for the case of nets of operators with sufficiently general form acting on functions in abstract measurable spaces. The result is applied to some examples arising in the classic harmonic analysis.
@article{VMUMM_2016_4_a3,
     author = {D. V. Fufaev},
     title = {Convergence of products of operator orientations},
     journal = {Vestnik Moskovskogo universiteta. Matematika, mehanika},
     pages = {23--33},
     year = {2016},
     number = {4},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/VMUMM_2016_4_a3/}
}
TY  - JOUR
AU  - D. V. Fufaev
TI  - Convergence of products of operator orientations
JO  - Vestnik Moskovskogo universiteta. Matematika, mehanika
PY  - 2016
SP  - 23
EP  - 33
IS  - 4
UR  - http://geodesic.mathdoc.fr/item/VMUMM_2016_4_a3/
LA  - ru
ID  - VMUMM_2016_4_a3
ER  - 
%0 Journal Article
%A D. V. Fufaev
%T Convergence of products of operator orientations
%J Vestnik Moskovskogo universiteta. Matematika, mehanika
%D 2016
%P 23-33
%N 4
%U http://geodesic.mathdoc.fr/item/VMUMM_2016_4_a3/
%G ru
%F VMUMM_2016_4_a3
D. V. Fufaev. Convergence of products of operator orientations. Vestnik Moskovskogo universiteta. Matematika, mehanika, no. 4 (2016), pp. 23-33. http://geodesic.mathdoc.fr/item/VMUMM_2016_4_a3/

[1] Stein I., Singulyarnye integraly i differentsialnye svoistva funktsii, Mir, M., 1973 | MR

[2] Zigmund A., Trigonometricheskie ryady, v. 1, 2, Mir, M., 1965 | MR

[3] Tolstov G.P., Mera i integral, Nauka, M., 1976 | MR

[4] Bogachev V.I., Osnovy teorii mery, v. 1, 2, RKhD, M.–Izhevsk, 2006

[5] Golubov B.I., Efimov A.V., Skvortsov V.A., Ryady i preobrazovaniya Uolsha: teoriya i primeneniya, Izd-vo LKI, M., 2008 | MR

[6] Khyuitt E., Ross K., Abstraktnyi garmonicheskii analiz, v. 2, Mir, M., 1975

[7] Khelemskii A.Ya., Banakhovy i polinormirovannye algebry: obschaya teoriya, predstavleniya, gomologii, Nauka, M., 1989 | MR

[8] Rudin W., Real and complex analysis, McGraw-Hill, N.Y., 1966 | MR | Zbl

[9] Kolmogorov A.N., Fomin S.V., Elementy teorii funktsii i funktsionalnogo analiza, Fizmatlit, M., 2004 | MR

[10] Federer G., Geometricheskaya teoriya mery, Nauka, M., 1987 | MR

[11] Dyachenko M.I., “Nekotorye problemy teorii kratnykh trigonometricheskikh ryadov”, Tr. Matem. in-ta AN SSSR, 190, 1989, 88–101 | Zbl

[12] Fufaev D.V., “Skhodimost srednikh Martsinkevicha”, Teoriya funktsii, ee prilozheniya i smezhnye voprosy, Mat-ly Dvenadtsatoi mezhdunarodnoi Kazanskoi letnei nauchnoi shkoly-konferentsii, Tr. Matem. tsentra im. N. I. Lobachevskogo, 51, 2015, 452–453

[13] Guzman M., Real variable methods in Fourier analysis, North-Holland PC, Amsterdam, 1981 | MR | Zbl

[14] Fufaev D.V., “Promezhutochnyi sluchai regulyarnosti v zadache differentsirovaniya kratnykh integralov”, Izv. Saratov. un-ta. Nov. ser. Ser. Matematika. Mekhanika. Informatika, 14:4(1) (2014), 401–407 | Zbl