The uniformly normal spaces
    
    
  
  
  
      
      
      
        
Vestnik Moskovskogo universiteta. Matematika, mehanika, no. 4 (2016), pp. 64-65
    
  
  
  
  
  
    
      
      
        
      
      
      
    Voir la notice de l'article provenant de la source Math-Net.Ru
            
              			A topological space $X$ is uniformly normal if the family $\mathcal{ U}$ of all symmetric neighborhoods of the diagonal $\Delta \subset X\times X$ forms a uniformity on $X$. A neighborhood of the diagonal is any subset whose interior contains the diagonal. It is proved that the $\Sigma$-product of Lindelof $p$-spaces of countable tightness is uniformly normal.
			
            
            
            
          
        
      @article{VMUMM_2016_4_a10,
     author = {A. V. Bogomolov},
     title = {The uniformly normal spaces},
     journal = {Vestnik Moskovskogo universiteta. Matematika, mehanika},
     pages = {64--65},
     publisher = {mathdoc},
     number = {4},
     year = {2016},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/VMUMM_2016_4_a10/}
}
                      
                      
                    A. V. Bogomolov. The uniformly normal spaces. Vestnik Moskovskogo universiteta. Matematika, mehanika, no. 4 (2016), pp. 64-65. http://geodesic.mathdoc.fr/item/VMUMM_2016_4_a10/
