The uniformly normal spaces
Vestnik Moskovskogo universiteta. Matematika, mehanika, no. 4 (2016), pp. 64-65

Voir la notice de l'article provenant de la source Math-Net.Ru

A topological space $X$ is uniformly normal if the family $\mathcal{ U}$ of all symmetric neighborhoods of the diagonal $\Delta \subset X\times X$ forms a uniformity on $X$. A neighborhood of the diagonal is any subset whose interior contains the diagonal. It is proved that the $\Sigma$-product of Lindelof $p$-spaces of countable tightness is uniformly normal.
@article{VMUMM_2016_4_a10,
     author = {A. V. Bogomolov},
     title = {The uniformly normal spaces},
     journal = {Vestnik Moskovskogo universiteta. Matematika, mehanika},
     pages = {64--65},
     publisher = {mathdoc},
     number = {4},
     year = {2016},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/VMUMM_2016_4_a10/}
}
TY  - JOUR
AU  - A. V. Bogomolov
TI  - The uniformly normal spaces
JO  - Vestnik Moskovskogo universiteta. Matematika, mehanika
PY  - 2016
SP  - 64
EP  - 65
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/VMUMM_2016_4_a10/
LA  - ru
ID  - VMUMM_2016_4_a10
ER  - 
%0 Journal Article
%A A. V. Bogomolov
%T The uniformly normal spaces
%J Vestnik Moskovskogo universiteta. Matematika, mehanika
%D 2016
%P 64-65
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/VMUMM_2016_4_a10/
%G ru
%F VMUMM_2016_4_a10
A. V. Bogomolov. The uniformly normal spaces. Vestnik Moskovskogo universiteta. Matematika, mehanika, no. 4 (2016), pp. 64-65. http://geodesic.mathdoc.fr/item/VMUMM_2016_4_a10/