The uniformly normal spaces
Vestnik Moskovskogo universiteta. Matematika, mehanika, no. 4 (2016), pp. 64-65 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

A topological space $X$ is uniformly normal if the family $\mathcal{ U}$ of all symmetric neighborhoods of the diagonal $\Delta \subset X\times X$ forms a uniformity on $X$. A neighborhood of the diagonal is any subset whose interior contains the diagonal. It is proved that the $\Sigma$-product of Lindelof $p$-spaces of countable tightness is uniformly normal.
@article{VMUMM_2016_4_a10,
     author = {A. V. Bogomolov},
     title = {The uniformly normal spaces},
     journal = {Vestnik Moskovskogo universiteta. Matematika, mehanika},
     pages = {64--65},
     year = {2016},
     number = {4},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/VMUMM_2016_4_a10/}
}
TY  - JOUR
AU  - A. V. Bogomolov
TI  - The uniformly normal spaces
JO  - Vestnik Moskovskogo universiteta. Matematika, mehanika
PY  - 2016
SP  - 64
EP  - 65
IS  - 4
UR  - http://geodesic.mathdoc.fr/item/VMUMM_2016_4_a10/
LA  - ru
ID  - VMUMM_2016_4_a10
ER  - 
%0 Journal Article
%A A. V. Bogomolov
%T The uniformly normal spaces
%J Vestnik Moskovskogo universiteta. Matematika, mehanika
%D 2016
%P 64-65
%N 4
%U http://geodesic.mathdoc.fr/item/VMUMM_2016_4_a10/
%G ru
%F VMUMM_2016_4_a10
A. V. Bogomolov. The uniformly normal spaces. Vestnik Moskovskogo universiteta. Matematika, mehanika, no. 4 (2016), pp. 64-65. http://geodesic.mathdoc.fr/item/VMUMM_2016_4_a10/

[1] Engelking R., Obschaya topologiya, Mir, M., 1986 | MR

[2] Corson H.H., “Normality in subsets of product spaces”, Amer. J. Math., 81:3 (1959), 785–796 | DOI | MR | Zbl

[3] Kombarov A.P., “O $\Sigma$-proizvedeniyakh topologicheskikh prostranstv”, Dokl. AN SSSR, 199:3 (1971), 526–528 | Zbl

[4] Kombarov A.P., “O proizvedenii normalnykh prostranstv. Ravnomernosti na $\Sigma$-proizvedeniyakh”, Dokl. AN SSSR, 205:5 (1972), 1033–1035 | Zbl

[5] Arkhangelskii A.V., “Ob odnom klasse prostranstv, soderzhaschem vse metricheskie i vse lokalno bikompaktnye prostranstva”, Matem. sb., 67 (1976), 55–85

[6] Kombarov A.P., “O tesnote i normalnosti $\Sigma$-proizvedenii”, Dokl. AN SSSR, 239:4 (1978), 775–778 | MR | Zbl

[7] Kombarov A.P., “On $F_{\sigma}$-${\delta}$-normality and hereditary ${\delta}$-normality”, Topol. and Appl., 91 (1999), 221–226 | DOI | MR | Zbl