Maximal number of Boolean functions realized by an initial Boolean automaton with two constant states
Vestnik Moskovskogo universiteta. Matematika, mehanika, no. 4 (2016), pp. 12-17 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

The problem of realization of Boolean functions by initial Boolean automata with two constant states and $n$ inputs is considered. Initial Boolean automaton with two constant states and $n$ inputs is an initial automaton with output such that in all states output functions are $n$-ary constant Boolean functions $0$ or $1$. The maximum cardinality of set of $n$-ary Boolean functions where $n > 1$ realized by an initial Boolean automaton with two constant states and $n$ inputs is obtained.
@article{VMUMM_2016_4_a1,
     author = {L. N. Sysoeva},
     title = {Maximal number of {Boolean} functions realized by an initial {Boolean} automaton with two constant states},
     journal = {Vestnik Moskovskogo universiteta. Matematika, mehanika},
     pages = {12--17},
     year = {2016},
     number = {4},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/VMUMM_2016_4_a1/}
}
TY  - JOUR
AU  - L. N. Sysoeva
TI  - Maximal number of Boolean functions realized by an initial Boolean automaton with two constant states
JO  - Vestnik Moskovskogo universiteta. Matematika, mehanika
PY  - 2016
SP  - 12
EP  - 17
IS  - 4
UR  - http://geodesic.mathdoc.fr/item/VMUMM_2016_4_a1/
LA  - ru
ID  - VMUMM_2016_4_a1
ER  - 
%0 Journal Article
%A L. N. Sysoeva
%T Maximal number of Boolean functions realized by an initial Boolean automaton with two constant states
%J Vestnik Moskovskogo universiteta. Matematika, mehanika
%D 2016
%P 12-17
%N 4
%U http://geodesic.mathdoc.fr/item/VMUMM_2016_4_a1/
%G ru
%F VMUMM_2016_4_a1
L. N. Sysoeva. Maximal number of Boolean functions realized by an initial Boolean automaton with two constant states. Vestnik Moskovskogo universiteta. Matematika, mehanika, no. 4 (2016), pp. 12-17. http://geodesic.mathdoc.fr/item/VMUMM_2016_4_a1/

[1] Yablonskii S.V., Vvedenie v diskretnuyu matematiku, Vysshaya shkola, M., 2006 | MR

[2] A. B. Ugolnikov (otv. red.), Konspekt lektsii O. B. Lupanova po kursu “Vvedenie v matematicheskuyu logiku”, Izd-vo TsPI pri mekh.-mat. f-te MGU, M., 2007

[3] Sysoeva L.N., “O nekotorykh svoistvakh obobschennykh $\alpha$-formul”, Vestn. Mosk. un-ta. Matem. Mekhan., 2013, no. 4, 51–55 | MR | Zbl

[4] Sysoeva L.N., “O realizatsii bulevykh funktsii obobschennymi $\alpha$-formulami”, Uch. zap. Kazan. un-ta. Ser. Fiz.-matem. nauki, 156:3 (2014), 116–122 | MR