Maximal number of Boolean functions realized by an initial Boolean automaton with two constant states
Vestnik Moskovskogo universiteta. Matematika, mehanika, no. 4 (2016), pp. 12-17
Cet article a éte moissonné depuis la source Math-Net.Ru
The problem of realization of Boolean functions by initial Boolean automata with two constant states and $n$ inputs is considered. Initial Boolean automaton with two constant states and $n$ inputs is an initial automaton with output such that in all states output functions are $n$-ary constant Boolean functions $0$ or $1$. The maximum cardinality of set of $n$-ary Boolean functions where $n > 1$ realized by an initial Boolean automaton with two constant states and $n$ inputs is obtained.
@article{VMUMM_2016_4_a1,
author = {L. N. Sysoeva},
title = {Maximal number of {Boolean} functions realized by an initial {Boolean} automaton with two constant states},
journal = {Vestnik Moskovskogo universiteta. Matematika, mehanika},
pages = {12--17},
year = {2016},
number = {4},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/VMUMM_2016_4_a1/}
}
TY - JOUR AU - L. N. Sysoeva TI - Maximal number of Boolean functions realized by an initial Boolean automaton with two constant states JO - Vestnik Moskovskogo universiteta. Matematika, mehanika PY - 2016 SP - 12 EP - 17 IS - 4 UR - http://geodesic.mathdoc.fr/item/VMUMM_2016_4_a1/ LA - ru ID - VMUMM_2016_4_a1 ER -
L. N. Sysoeva. Maximal number of Boolean functions realized by an initial Boolean automaton with two constant states. Vestnik Moskovskogo universiteta. Matematika, mehanika, no. 4 (2016), pp. 12-17. http://geodesic.mathdoc.fr/item/VMUMM_2016_4_a1/
[1] Yablonskii S.V., Vvedenie v diskretnuyu matematiku, Vysshaya shkola, M., 2006 | MR
[2] A. B. Ugolnikov (otv. red.), Konspekt lektsii O. B. Lupanova po kursu “Vvedenie v matematicheskuyu logiku”, Izd-vo TsPI pri mekh.-mat. f-te MGU, M., 2007
[3] Sysoeva L.N., “O nekotorykh svoistvakh obobschennykh $\alpha$-formul”, Vestn. Mosk. un-ta. Matem. Mekhan., 2013, no. 4, 51–55 | MR | Zbl
[4] Sysoeva L.N., “O realizatsii bulevykh funktsii obobschennymi $\alpha$-formulami”, Uch. zap. Kazan. un-ta. Ser. Fiz.-matem. nauki, 156:3 (2014), 116–122 | MR