@article{VMUMM_2016_4_a0,
author = {N. T. Nemesh},
title = {Homological triviality of the category of $L_p$},
journal = {Vestnik Moskovskogo universiteta. Matematika, mehanika},
pages = {3--12},
year = {2016},
number = {4},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/VMUMM_2016_4_a0/}
}
N. T. Nemesh. Homological triviality of the category of $L_p$. Vestnik Moskovskogo universiteta. Matematika, mehanika, no. 4 (2016), pp. 3-12. http://geodesic.mathdoc.fr/item/VMUMM_2016_4_a0/
[1] Khelemskii A.Ya., “Metricheskaya svoboda i proektivnost dlya klassicheskikh i kvantovykh normirovannykh modulei”, Matem. sb., 204:7 (2013), 127–158 | DOI | Zbl
[2] Helemskii A.Ya., “Extreme version of projectivity for normed modules over sequence algebras”, Can. J. Math., 65 (2013), 559–574 | DOI | MR | Zbl
[3] Helemskii A.Ya., “Metric version of flatness and Hahn–Banach type theorems for normed modules over sequence algebras”, Stud. Math., 206:2 (2011), 135–160 | DOI | MR | Zbl
[4] Khelemskii A.Ya., “Tenzornye proizvedeniya i multiplikatory modulei $L_p$ na lokalno kompaktnykh prostranstvakh s meroi”, Matem. zam., 96:3 (2014), 450–469 | DOI | Zbl
[5] Bogachev V.I., Osnovy teorii mery, 2-e izd., RKhD, M.–Izhevsk, 2006
[6] Albiac F., Kalton N.J., Topics in Banach space theory, Springer Inc., N.Y., 2006 | MR | Zbl