Homological triviality of the category of $L_p$
Vestnik Moskovskogo universiteta. Matematika, mehanika, no. 4 (2016), pp. 3-12
Voir la notice de l'article provenant de la source Math-Net.Ru
The paper presents a complete description of topologically injective, topologically surjective, isometric and coisometric multiplication operators by a function acting between $L_p$ spaces of $\sigma$-finite measure spaces. It is proved that all such operators are invertible from the right and left. As a corollary, it is proved that in the category consisting of $L_p$-spaces with all $p\in[1,+\infty]$ considered as left Banach modules over the algebra of bounded measurable functions, all objects are metrically and topologically projective, injective, and flat.
@article{VMUMM_2016_4_a0,
author = {N. T. Nemesh},
title = {Homological triviality of the category of $L_p$},
journal = {Vestnik Moskovskogo universiteta. Matematika, mehanika},
pages = {3--12},
publisher = {mathdoc},
number = {4},
year = {2016},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/VMUMM_2016_4_a0/}
}
N. T. Nemesh. Homological triviality of the category of $L_p$. Vestnik Moskovskogo universiteta. Matematika, mehanika, no. 4 (2016), pp. 3-12. http://geodesic.mathdoc.fr/item/VMUMM_2016_4_a0/