Homological triviality of the category of $L_p$
Vestnik Moskovskogo universiteta. Matematika, mehanika, no. 4 (2016), pp. 3-12 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

The paper presents a complete description of topologically injective, topologically surjective, isometric and coisometric multiplication operators by a function acting between $L_p$ spaces of $\sigma$-finite measure spaces. It is proved that all such operators are invertible from the right and left. As a corollary, it is proved that in the category consisting of $L_p$-spaces with all $p\in[1,+\infty]$ considered as left Banach modules over the algebra of bounded measurable functions, all objects are metrically and topologically projective, injective, and flat.
@article{VMUMM_2016_4_a0,
     author = {N. T. Nemesh},
     title = {Homological triviality of the category of $L_p$},
     journal = {Vestnik Moskovskogo universiteta. Matematika, mehanika},
     pages = {3--12},
     year = {2016},
     number = {4},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/VMUMM_2016_4_a0/}
}
TY  - JOUR
AU  - N. T. Nemesh
TI  - Homological triviality of the category of $L_p$
JO  - Vestnik Moskovskogo universiteta. Matematika, mehanika
PY  - 2016
SP  - 3
EP  - 12
IS  - 4
UR  - http://geodesic.mathdoc.fr/item/VMUMM_2016_4_a0/
LA  - ru
ID  - VMUMM_2016_4_a0
ER  - 
%0 Journal Article
%A N. T. Nemesh
%T Homological triviality of the category of $L_p$
%J Vestnik Moskovskogo universiteta. Matematika, mehanika
%D 2016
%P 3-12
%N 4
%U http://geodesic.mathdoc.fr/item/VMUMM_2016_4_a0/
%G ru
%F VMUMM_2016_4_a0
N. T. Nemesh. Homological triviality of the category of $L_p$. Vestnik Moskovskogo universiteta. Matematika, mehanika, no. 4 (2016), pp. 3-12. http://geodesic.mathdoc.fr/item/VMUMM_2016_4_a0/

[1] Khelemskii A.Ya., “Metricheskaya svoboda i proektivnost dlya klassicheskikh i kvantovykh normirovannykh modulei”, Matem. sb., 204:7 (2013), 127–158 | DOI | Zbl

[2] Helemskii A.Ya., “Extreme version of projectivity for normed modules over sequence algebras”, Can. J. Math., 65 (2013), 559–574 | DOI | MR | Zbl

[3] Helemskii A.Ya., “Metric version of flatness and Hahn–Banach type theorems for normed modules over sequence algebras”, Stud. Math., 206:2 (2011), 135–160 | DOI | MR | Zbl

[4] Khelemskii A.Ya., “Tenzornye proizvedeniya i multiplikatory modulei $L_p$ na lokalno kompaktnykh prostranstvakh s meroi”, Matem. zam., 96:3 (2014), 450–469 | DOI | Zbl

[5] Bogachev V.I., Osnovy teorii mery, 2-e izd., RKhD, M.–Izhevsk, 2006

[6] Albiac F., Kalton N.J., Topics in Banach space theory, Springer Inc., N.Y., 2006 | MR | Zbl