The estimate of the Ricci curvature of a weighted tree
Vestnik Moskovskogo universiteta. Matematika, mehanika, no. 3 (2016), pp. 51-53 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

An estimate of the coarse Ricci curvature is obtained in the paper for weighed trees with random walk on the vertex set.
@article{VMUMM_2016_3_a9,
     author = {O. V. Rubleva},
     title = {The estimate of the {Ricci} curvature of a weighted tree},
     journal = {Vestnik Moskovskogo universiteta. Matematika, mehanika},
     pages = {51--53},
     year = {2016},
     number = {3},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/VMUMM_2016_3_a9/}
}
TY  - JOUR
AU  - O. V. Rubleva
TI  - The estimate of the Ricci curvature of a weighted tree
JO  - Vestnik Moskovskogo universiteta. Matematika, mehanika
PY  - 2016
SP  - 51
EP  - 53
IS  - 3
UR  - http://geodesic.mathdoc.fr/item/VMUMM_2016_3_a9/
LA  - ru
ID  - VMUMM_2016_3_a9
ER  - 
%0 Journal Article
%A O. V. Rubleva
%T The estimate of the Ricci curvature of a weighted tree
%J Vestnik Moskovskogo universiteta. Matematika, mehanika
%D 2016
%P 51-53
%N 3
%U http://geodesic.mathdoc.fr/item/VMUMM_2016_3_a9/
%G ru
%F VMUMM_2016_3_a9
O. V. Rubleva. The estimate of the Ricci curvature of a weighted tree. Vestnik Moskovskogo universiteta. Matematika, mehanika, no. 3 (2016), pp. 51-53. http://geodesic.mathdoc.fr/item/VMUMM_2016_3_a9/

[1] Bakry D., Emery M., “Diffusions hypercontractives”, Lect. Notes Math., 1123, 1985, 177–206 | DOI | MR | Zbl

[2] Ollivier Y., “Ricci curvature of Markov chains on metric spaces”, J. Funct. Anal., 256:3 (2009), 810–864 | DOI | MR | Zbl

[3] Lin Y., Lu L.Y., Yau S.T., “Ricci curvature of graphs”, Tohoku Math. J., 63 (2011), 605–627 | DOI | MR | Zbl

[4] Rubleva O., “Krivizna Richchi vzveshennykh derevev”, Vestn. Mosk. un-ta. Matem. Mekhan., 2015, no. 6, 52–54 | MR | Zbl