@article{VMUMM_2016_3_a8,
author = {V. A. Kibkalo},
title = {The topology of the analog of {Kovalevskaya} integrability case on the {Lie} algebra $\mathrm{so}(4)$ under zero area integral},
journal = {Vestnik Moskovskogo universiteta. Matematika, mehanika},
pages = {46--50},
year = {2016},
number = {3},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/VMUMM_2016_3_a8/}
}
TY - JOUR
AU - V. A. Kibkalo
TI - The topology of the analog of Kovalevskaya integrability case on the Lie algebra $\mathrm{so}(4)$ under zero area integral
JO - Vestnik Moskovskogo universiteta. Matematika, mehanika
PY - 2016
SP - 46
EP - 50
IS - 3
UR - http://geodesic.mathdoc.fr/item/VMUMM_2016_3_a8/
LA - ru
ID - VMUMM_2016_3_a8
ER -
%0 Journal Article
%A V. A. Kibkalo
%T The topology of the analog of Kovalevskaya integrability case on the Lie algebra $\mathrm{so}(4)$ under zero area integral
%J Vestnik Moskovskogo universiteta. Matematika, mehanika
%D 2016
%P 46-50
%N 3
%U http://geodesic.mathdoc.fr/item/VMUMM_2016_3_a8/
%G ru
%F VMUMM_2016_3_a8
V. A. Kibkalo. The topology of the analog of Kovalevskaya integrability case on the Lie algebra $\mathrm{so}(4)$ under zero area integral. Vestnik Moskovskogo universiteta. Matematika, mehanika, no. 3 (2016), pp. 46-50. http://geodesic.mathdoc.fr/item/VMUMM_2016_3_a8/
[1] Fomenko A.T., “Topologiya poverkhnostei postoyannoi energii integriruemykh gamiltonovykh sistem i prepyatstviya k integriruemosti”, Izv. AN SSSR. Ser. matem., 50:6 (1986), 1276–1307 | MR | Zbl
[2] Fomenko A.T., Tsishang Kh., “O topologii trekhmernykh mnogoobrazii, voznikayuschikh v gamiltonovoi mekhanike”, Dokl. AN SSSR, 294:2 (1987), 283–287 | MR | Zbl
[3] Matveev S.V., Fomenko A.T., “Constant energy surfaces of Hamiltonian systems, enumeration of three-dimensional manifolds in increasing order of complexity, and computation of volumes of closed hyperbolic manifolds”, Rus. Math. Surveys, 43:1 (1988), 3–24 | DOI | MR | Zbl
[4] Fomenko A.T., Tsishang Kh., “O tipichnykh topologicheskikh svoistvakh integriruemykh gamiltonovykh sistem”, Izv. AN SSSR. Ser. matem., 52:2 (1988), 378–407 | Zbl
[5] Bolsinov A.V., Fomenko A.T., Integriruemye gamiltonovy sistemy. Geometriya, topologiya, klassifikatsiya, Izd. dom “Udmurtskii universitet”, Izhevsk, 1999 | MR
[6] Fomenko A.T., Nikolaenko S.S., “The Chaplygin case in dynamics of a rigid body in fluid is orbitally equivalent to the Euler case in rigid body dynamics and to the Jacobi problem about geodesics on the ellipsoid”, J. Geom. and Phys., 87 (2015), 115–133 | DOI | MR | Zbl
[7] Fomenko A.T., Konyaev A.Yu., “Algebra and geometry through Hamiltonian systems”, Continuous and distributed systems. Theory and applications, Solid Mechanics and Its Applications, 211, eds. V.Z. Zgurovsky, V.A. Sadovnichiy, Springer, Cham, 2014, 3–21 | DOI | MR | Zbl
[8] Fomenko A.T., Konyaev A.Yu., “New approach to symmetries and singularities in integrable Hamiltonian systems”, Topol. and its Appl., 159 (2012), 1964–1975 | DOI | MR | Zbl
[9] Kudryavtseva E.A., Fomenko A.T., “Gruppy simmetrii pravilnykh funktsii Morsa na poverkhnostyakh”, Dokl. RAN. Cer. matem., 446:6 (2012), 615–617 | Zbl
[10] Kudryavtseva E.A., Nikonov I.M., Fomenko A.T., “Maksimalno simmetrichnye kletochnye razbieniya poverkhnostei i ikh nakrytiya”, Matem. cb., 199:9 (2008), 3–96 | DOI | MR | Zbl
[11] Kharlamov M.P., Topologicheskii analiz integriruemykh zadach dinamiki tverdogo tela, Izd-vo LGU, L., 1988 | MR
[12] Bolsinov A.V., Rikhter P.Kh., Fomenko A.T., “Metod krugovykh molekul i topologiya volchka Kovalevskoi”, Matem. sb., 191:2 (2000), 3–42 | DOI | Zbl
[13] Komarov I.V., “Bazis Kovalevskoi dlya atoma vodoroda”, Teor. i matem. fiz., 47:1 (1981), 67–72 | MR
[14] Kozlov I.K., “Topologiya sloeniya Liuvillya dlya integriruemogo sluchaya Kovalevskoi na algebre Li so(4)”, Matem. sb., 205:4 (2014), 79–120 | DOI | Zbl
[15] Morozov P.V., “Topologiya sloenii Liuvillya sluchaev integriruemosti Steklova i Sokolova uravnenii Kirkhgofa”, Matem. sb., 195:3 (2004), 69–114 | DOI | MR
[16] Slavina N.S., “Topologicheskaya klassifikatsiya sistem tipa Kovalevskoi–Yakhi”, Matem. sb., 205:1 (2014), 105–160 | DOI | MR | Zbl