Numerical stabilization from the boundary for solutions of a model one-dimensional of a model one-Dimensional RBMK reactor
Vestnik Moskovskogo universiteta. Matematika, mehanika, no. 3 (2016), pp. 20-24 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

The problem of construction of first king boundary conditions providing an asymptotic change of the trivial solution of a model one-dimensional RBMK reactor to the required stationary state is numerically studied according to specific features of this model. Results of calculations are presented for different admissible modes. The principal feasibility of efficient stabilization of the dynamics of occurring processes by boundary control of fast and slow neutrons is shown as well as its essential slow-down in the control of only fast neutrons.
@article{VMUMM_2016_3_a3,
     author = {A. A. Kornev},
     title = {Numerical stabilization from the boundary for solutions of a model one-dimensional of a model {one-Dimensional} {RBMK} reactor},
     journal = {Vestnik Moskovskogo universiteta. Matematika, mehanika},
     pages = {20--24},
     year = {2016},
     number = {3},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/VMUMM_2016_3_a3/}
}
TY  - JOUR
AU  - A. A. Kornev
TI  - Numerical stabilization from the boundary for solutions of a model one-dimensional of a model one-Dimensional RBMK reactor
JO  - Vestnik Moskovskogo universiteta. Matematika, mehanika
PY  - 2016
SP  - 20
EP  - 24
IS  - 3
UR  - http://geodesic.mathdoc.fr/item/VMUMM_2016_3_a3/
LA  - ru
ID  - VMUMM_2016_3_a3
ER  - 
%0 Journal Article
%A A. A. Kornev
%T Numerical stabilization from the boundary for solutions of a model one-dimensional of a model one-Dimensional RBMK reactor
%J Vestnik Moskovskogo universiteta. Matematika, mehanika
%D 2016
%P 20-24
%N 3
%U http://geodesic.mathdoc.fr/item/VMUMM_2016_3_a3/
%G ru
%F VMUMM_2016_3_a3
A. A. Kornev. Numerical stabilization from the boundary for solutions of a model one-dimensional of a model one-Dimensional RBMK reactor. Vestnik Moskovskogo universiteta. Matematika, mehanika, no. 3 (2016), pp. 20-24. http://geodesic.mathdoc.fr/item/VMUMM_2016_3_a3/

[1] Reed Wm.H., Hansen K.F., “Alternating direction methods for the reactor kinetics equations”, Nuclear Sci. and Eng., 1970, no. 41, 431–442 | DOI

[2] Strakhovskaya L.G., Fedorenko R.P., “Yadernyi reaktor — zhestkaya sistema. III. Kvaziasimptoticheskii metod integrirovaniya i glavnaya spektralnaya zadacha (vychislitelnyi eksperiment)”, Preprinty In-ta prikladnoi matematiki im. M.V. Keldysha RAN, 1996, 044

[3] Fursikov A.V., “Stabilizability of two-dimensional Navier–Stokes equations with help of boundary feedback control”, J. Math. Fluid Mech., 3 (2001), 259–301 | DOI | MR | Zbl

[4] Chizhonkov E.V., “Numerical aspects of one stabilization method”, Russ. J. Numer. Anal. Math. Modelling, 18:5 (2003), 363–376 | DOI | MR | Zbl

[5] Vedernikova E.Yu., Kornev A.A., “K zadache o nagreve sterzhnya”, Vestn. Mosk. un-ta. Matem. Mekhan., 2014, no. 6, 10–15 | MR

[6] Kornev A.A., “Ob iteratsionnom metode postroeniya “usov Adamara””, Zhurn. vychisl. matem i matem. fiz., 44:8 (2004), 1346–1355 | MR | Zbl

[7] Fursikov A.V., Kornev A.A., “Feedback stabilization for Navier–Stokes equations: theory and calculations”, Mathematical Aspects of Fluid Mechanics, Lect. Notes Ser., Cambridge University Press, Cambridge, 2012, 130–172 | MR | Zbl