Some exact solutions of the evolutionary equation for spreading of a plastic layer on a plane
Vestnik Moskovskogo universiteta. Matematika, mehanika, no. 3 (2016), pp. 61-65 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

The flow of a thin plastic layer between two rigid plates approaching normal to each other is considered. The kinematics of plastic layer spreading is studied. An evolution equation determining the free boundary of the spreading region is derived. The similarity solutions of this equation are analyzed. It is shown that the evolution equation can be reduced to a particular case of the nonlinear heat conduction equation. New exact particular solutions to the evolution equation are obtained using the variable separation method and the method of self-similar transformations.
@article{VMUMM_2016_3_a12,
     author = {V. A. Kadymov and E. N. Sosenushkin and E. A. Yanovskaya},
     title = {Some exact solutions of the evolutionary equation for spreading of a plastic layer on a plane},
     journal = {Vestnik Moskovskogo universiteta. Matematika, mehanika},
     pages = {61--65},
     year = {2016},
     number = {3},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/VMUMM_2016_3_a12/}
}
TY  - JOUR
AU  - V. A. Kadymov
AU  - E. N. Sosenushkin
AU  - E. A. Yanovskaya
TI  - Some exact solutions of the evolutionary equation for spreading of a plastic layer on a plane
JO  - Vestnik Moskovskogo universiteta. Matematika, mehanika
PY  - 2016
SP  - 61
EP  - 65
IS  - 3
UR  - http://geodesic.mathdoc.fr/item/VMUMM_2016_3_a12/
LA  - ru
ID  - VMUMM_2016_3_a12
ER  - 
%0 Journal Article
%A V. A. Kadymov
%A E. N. Sosenushkin
%A E. A. Yanovskaya
%T Some exact solutions of the evolutionary equation for spreading of a plastic layer on a plane
%J Vestnik Moskovskogo universiteta. Matematika, mehanika
%D 2016
%P 61-65
%N 3
%U http://geodesic.mathdoc.fr/item/VMUMM_2016_3_a12/
%G ru
%F VMUMM_2016_3_a12
V. A. Kadymov; E. N. Sosenushkin; E. A. Yanovskaya. Some exact solutions of the evolutionary equation for spreading of a plastic layer on a plane. Vestnik Moskovskogo universiteta. Matematika, mehanika, no. 3 (2016), pp. 61-65. http://geodesic.mathdoc.fr/item/VMUMM_2016_3_a12/

[1] Ilyushin A.A., “Voprosy teorii techeniya plasticheskogo veschestva po poverkhnostyam”, Prikl. matem. i mekhan., 18:3 (1954), 265–288

[2] Prandtl L., “Anwendimgsbeispiele zu einem Henckyschen Satz über das plastische Gleichgewicht”, ZAMM, 3:6 (1923), 401–406 | DOI | Zbl

[3] Bezukhov V.N., Ob osadke plasticheskogo sloya nekrugovoi formy v plane, Kand. dis., M., 1955

[4] Kiiko I.A., “Plasticheskoe techenie metallov”, Nauchnye osnovy progressivnoi tekhniki i tekhnologii, Mashinostroenie, M., 1985, 102–133

[5] Belov N.A., Kadymov V.A., “O kraevoi zadache techeniya plasticheskogo sloya mezhdu sblizhayuschimisya zhestkimi plitami”, Izv. RAN. Mekhan. tverdogo tela, 2011, no. 1, 46–58

[6] Polyanin A.D., Zaitsev V.F., Spravochnik po nelineinym uravneniyam matematicheskoi fiziki. Tochnye resheniya, Fizmatlit, M., 2002 | MR

[7] Kadymov V.A., Belov N.A., “O tochnykh resheniyakh uravneniya rastekaniya plasticheskogo sloya na ploskosti”, Tr. Mezhdunar. nauchno-tekhn. konf. “Sovremennye metallicheskie materialy i tekhnologii”, SMMT'2011, Izd-vo GPU, SPb., 2011, 33–36