Uniqueness of weak solutions to dynamical problems in the elasticity theory with boundary conditions of Winkler and inertial types
Vestnik Moskovskogo universiteta. Matematika, mehanika, no. 3 (2016), pp. 57-61 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

A uniqueness theorem for the weak solution of an initial-boundary value problem in the anisotropic elasticity theory with the boundary conditions that “don't keep” energy, namely, with the impedance and inertial type conditions is proved. The chosen method of proof does not require the positive definiteness of the elastic constant tensor (the case which may arise when solving the problems by the averaging method for composite materials), but it requires to take the energy variation law as a postulate.
@article{VMUMM_2016_3_a11,
     author = {M. Sh. Israilov and S. E. Nosov},
     title = {Uniqueness of weak solutions to dynamical problems in the elasticity theory with boundary conditions of {Winkler} and inertial types},
     journal = {Vestnik Moskovskogo universiteta. Matematika, mehanika},
     pages = {57--61},
     year = {2016},
     number = {3},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/VMUMM_2016_3_a11/}
}
TY  - JOUR
AU  - M. Sh. Israilov
AU  - S. E. Nosov
TI  - Uniqueness of weak solutions to dynamical problems in the elasticity theory with boundary conditions of Winkler and inertial types
JO  - Vestnik Moskovskogo universiteta. Matematika, mehanika
PY  - 2016
SP  - 57
EP  - 61
IS  - 3
UR  - http://geodesic.mathdoc.fr/item/VMUMM_2016_3_a11/
LA  - ru
ID  - VMUMM_2016_3_a11
ER  - 
%0 Journal Article
%A M. Sh. Israilov
%A S. E. Nosov
%T Uniqueness of weak solutions to dynamical problems in the elasticity theory with boundary conditions of Winkler and inertial types
%J Vestnik Moskovskogo universiteta. Matematika, mehanika
%D 2016
%P 57-61
%N 3
%U http://geodesic.mathdoc.fr/item/VMUMM_2016_3_a11/
%G ru
%F VMUMM_2016_3_a11
M. Sh. Israilov; S. E. Nosov. Uniqueness of weak solutions to dynamical problems in the elasticity theory with boundary conditions of Winkler and inertial types. Vestnik Moskovskogo universiteta. Matematika, mehanika, no. 3 (2016), pp. 57-61. http://geodesic.mathdoc.fr/item/VMUMM_2016_3_a11/

[1] Petrashen I.G., “Osnovy matematicheskoi teorii rasprostraneniya uprugikh voln”, Voprosy dinamicheskoi teorii rasprostraneniya seismicheskikh voln, XVIII, Izd-vo LGU, L., 1978 | MR

[2] Poruchikov V.B., Metody dinamicheskoi teorii uprugosti, Nauka, M., 1986 | MR

[3] Nosov S.E., “Teorema edinstvennosti resheniya zadachi dinamicheskoi teorii uprugosti pri granichnykh usloviyakh vinklerovskogo i inertsionnogo tipov”, Vestn. Mosk. un-ta. Matem. Mekhan., 1995, no. 5, 66–70 | Zbl

[4] Dyuvo G., Lions Zh.-L., Neravenstva v mekhanike, Nauka, M., 1980 | MR

[5] Knops R.J., Payne L. E., “Uniqueness in classical elastodynamics”, Arch. Ration. Mech. and Anal., 24 (1968), 349–355 | DOI | MR

[6] Knops R.J., Payne L. E., Uniqueness theorems in linear elasticity, Springer, N.Y., 1971 | MR | Zbl

[7] Israilov M.Sh., Dinamicheskaya teoriya uprugosti i difraktsiya voln, Izd-vo MGU, M., 1992 | MR