Uniqueness of weak solutions to dynamical problems in the elasticity theory with boundary conditions of Winkler and inertial types
Vestnik Moskovskogo universiteta. Matematika, mehanika, no. 3 (2016), pp. 57-61
Voir la notice de l'article provenant de la source Math-Net.Ru
A uniqueness theorem for the weak solution of an initial-boundary value problem in the anisotropic elasticity theory with the boundary conditions that “don't keep” energy, namely, with the impedance and inertial type conditions is proved. The chosen method of proof does not require the positive definiteness of the elastic constant tensor (the case which may arise when solving the problems by the averaging method for composite materials), but it requires to take the energy variation law as a postulate.
@article{VMUMM_2016_3_a11,
author = {M. Sh. Israilov and S. E. Nosov},
title = {Uniqueness of weak solutions to dynamical problems in the elasticity theory with boundary conditions of {Winkler} and inertial types},
journal = {Vestnik Moskovskogo universiteta. Matematika, mehanika},
pages = {57--61},
publisher = {mathdoc},
number = {3},
year = {2016},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/VMUMM_2016_3_a11/}
}
TY - JOUR AU - M. Sh. Israilov AU - S. E. Nosov TI - Uniqueness of weak solutions to dynamical problems in the elasticity theory with boundary conditions of Winkler and inertial types JO - Vestnik Moskovskogo universiteta. Matematika, mehanika PY - 2016 SP - 57 EP - 61 IS - 3 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/VMUMM_2016_3_a11/ LA - ru ID - VMUMM_2016_3_a11 ER -
%0 Journal Article %A M. Sh. Israilov %A S. E. Nosov %T Uniqueness of weak solutions to dynamical problems in the elasticity theory with boundary conditions of Winkler and inertial types %J Vestnik Moskovskogo universiteta. Matematika, mehanika %D 2016 %P 57-61 %N 3 %I mathdoc %U http://geodesic.mathdoc.fr/item/VMUMM_2016_3_a11/ %G ru %F VMUMM_2016_3_a11
M. Sh. Israilov; S. E. Nosov. Uniqueness of weak solutions to dynamical problems in the elasticity theory with boundary conditions of Winkler and inertial types. Vestnik Moskovskogo universiteta. Matematika, mehanika, no. 3 (2016), pp. 57-61. http://geodesic.mathdoc.fr/item/VMUMM_2016_3_a11/