Complexity and depth of formulas for symmetric Boolean functions
Vestnik Moskovskogo universiteta. Matematika, mehanika, no. 3 (2016), pp. 53-57

Voir la notice de l'article provenant de la source Math-Net.Ru

A new approach for implementation of the counting function for a Boolean set is proposed. The approach is based on approximate calculation of sums. Using this approach, new upper bounds for the size and depth of symmetric functions over the basis $B_2$ of all dyadic functions and over the standard basis $B_0 =\{ \wedge, \vee,\overline{\phantom a} \}$ were non-constructively obtained. In particular, the depth of multiplication of $n-$bit binary numbers is asymptotically estimated from above by $4.02\log_2n$ relative to the basis $B_2$ and by $5.14\log_2n$ relative to the basis $B_0$.
@article{VMUMM_2016_3_a10,
     author = {I. S. Sergeev},
     title = {Complexity and depth of formulas for symmetric {Boolean} functions},
     journal = {Vestnik Moskovskogo universiteta. Matematika, mehanika},
     pages = {53--57},
     publisher = {mathdoc},
     number = {3},
     year = {2016},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/VMUMM_2016_3_a10/}
}
TY  - JOUR
AU  - I. S. Sergeev
TI  - Complexity and depth of formulas for symmetric Boolean functions
JO  - Vestnik Moskovskogo universiteta. Matematika, mehanika
PY  - 2016
SP  - 53
EP  - 57
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/VMUMM_2016_3_a10/
LA  - ru
ID  - VMUMM_2016_3_a10
ER  - 
%0 Journal Article
%A I. S. Sergeev
%T Complexity and depth of formulas for symmetric Boolean functions
%J Vestnik Moskovskogo universiteta. Matematika, mehanika
%D 2016
%P 53-57
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/VMUMM_2016_3_a10/
%G ru
%F VMUMM_2016_3_a10
I. S. Sergeev. Complexity and depth of formulas for symmetric Boolean functions. Vestnik Moskovskogo universiteta. Matematika, mehanika, no. 3 (2016), pp. 53-57. http://geodesic.mathdoc.fr/item/VMUMM_2016_3_a10/