Semigroup rings and group rings with large center
Vestnik Moskovskogo universiteta. Matematika, mehanika, no. 3 (2016), pp. 12-16 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

Ђ ring $R$ is called a ring with a large center or an IIC-ring if any nonzero ideal of $R$ has nonzero intersection with the center of $R$. We consider conditions under which a semigroup ring over an IIC-ring is an IIC-ring.
@article{VMUMM_2016_3_a1,
     author = {D. V. Zlydnev},
     title = {Semigroup rings and group rings with large center},
     journal = {Vestnik Moskovskogo universiteta. Matematika, mehanika},
     pages = {12--16},
     year = {2016},
     number = {3},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/VMUMM_2016_3_a1/}
}
TY  - JOUR
AU  - D. V. Zlydnev
TI  - Semigroup rings and group rings with large center
JO  - Vestnik Moskovskogo universiteta. Matematika, mehanika
PY  - 2016
SP  - 12
EP  - 16
IS  - 3
UR  - http://geodesic.mathdoc.fr/item/VMUMM_2016_3_a1/
LA  - ru
ID  - VMUMM_2016_3_a1
ER  - 
%0 Journal Article
%A D. V. Zlydnev
%T Semigroup rings and group rings with large center
%J Vestnik Moskovskogo universiteta. Matematika, mehanika
%D 2016
%P 12-16
%N 3
%U http://geodesic.mathdoc.fr/item/VMUMM_2016_3_a1/
%G ru
%F VMUMM_2016_3_a1
D. V. Zlydnev. Semigroup rings and group rings with large center. Vestnik Moskovskogo universiteta. Matematika, mehanika, no. 3 (2016), pp. 12-16. http://geodesic.mathdoc.fr/item/VMUMM_2016_3_a1/

[1] Armendariz E.P., Birkenmeier G.F., Park J.K., “Ideal intrinsic extensions with connections to PI-rings”, J. Pure and Appl. Algebra, 213 (2009), 1756–1776 | DOI | MR | Zbl

[2] Zalesskii A.E., Mikhalev A.V., “Gruppovye koltsa”, Itogi nauki i tekhniki. Sovremennye problemy matematiki, 2, M., VINITI, 5–118 | MR