Estimation of the depth of reversible circuits consisting of NOT, CNOT and 2-CNOT gates
    
    
  
  
  
      
      
      
        
Vestnik Moskovskogo universiteta. Matematika, mehanika, no. 3 (2016), pp. 3-12
    
  
  
  
  
  
    
      
      
        
      
      
      
    Voir la notice de l'article provenant de la source Math-Net.Ru
            
              			The paper discusses the asymptotic depth of a reversible circuit consisting of NOT, CNOT and 2-CNOT gates. The reversible circuit depth function $D(n,q)$ is introduced for a circuit implementing a mapping $f\colon\mathbb{Z}_2^n\to\mathbb{Z}_2^n$ as a function of $n$ and the number of additional inputs $q$. It is proved that for the case of implementing a permutation from $A(\mathbb{Z}_2^n)$ with a reversible circuit having no additional inputs the depth is bounded as $D(n, 0)\gtrsim 2^n/(3\log_2 n)$. It is proved that for the case of implementing a transformation $f\colon\mathbb{Z}_2^n\to\mathbb{Z}_2^n$ with a reversible circuit having $q_0\sim 2^n$ additional inputs the depth is bounded as $D(n,q_0)\lesssim 3n$.
			
            
            
            
          
        
      @article{VMUMM_2016_3_a0,
     author = {D. V. Zakablukov},
     title = {Estimation of the depth of reversible circuits consisting of {NOT,} {CNOT} and {2-CNOT} gates},
     journal = {Vestnik Moskovskogo universiteta. Matematika, mehanika},
     pages = {3--12},
     publisher = {mathdoc},
     number = {3},
     year = {2016},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/VMUMM_2016_3_a0/}
}
                      
                      
                    TY - JOUR AU - D. V. Zakablukov TI - Estimation of the depth of reversible circuits consisting of NOT, CNOT and 2-CNOT gates JO - Vestnik Moskovskogo universiteta. Matematika, mehanika PY - 2016 SP - 3 EP - 12 IS - 3 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/VMUMM_2016_3_a0/ LA - ru ID - VMUMM_2016_3_a0 ER -
D. V. Zakablukov. Estimation of the depth of reversible circuits consisting of NOT, CNOT and 2-CNOT gates. Vestnik Moskovskogo universiteta. Matematika, mehanika, no. 3 (2016), pp. 3-12. http://geodesic.mathdoc.fr/item/VMUMM_2016_3_a0/
