Complexity of linear and majority functions in the basis of antichain functions
Vestnik Moskovskogo universiteta. Matematika, mehanika, no. 2 (2016), pp. 51-52

Voir la notice de l'article provenant de la source Math-Net.Ru

The complexity circuits of Boolean functions is studied in a basis consisting of all characteristic functions of antichains over the Boolean cube. It is established that the circuit complexity of an $n$-variable parity function is $\left\lfloor \frac{n+1}{2}\right\rfloor$ and the complexity of its negation equals the complexity of the $n$-variable majority function which is $\left\lceil \frac{n+1}{2} \right\rceil$.
@article{VMUMM_2016_2_a9,
     author = {O. V. Podolskaya},
     title = {Complexity of linear and majority functions in the basis of antichain functions},
     journal = {Vestnik Moskovskogo universiteta. Matematika, mehanika},
     pages = {51--52},
     publisher = {mathdoc},
     number = {2},
     year = {2016},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/VMUMM_2016_2_a9/}
}
TY  - JOUR
AU  - O. V. Podolskaya
TI  - Complexity of linear and majority functions in the basis of antichain functions
JO  - Vestnik Moskovskogo universiteta. Matematika, mehanika
PY  - 2016
SP  - 51
EP  - 52
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/VMUMM_2016_2_a9/
LA  - ru
ID  - VMUMM_2016_2_a9
ER  - 
%0 Journal Article
%A O. V. Podolskaya
%T Complexity of linear and majority functions in the basis of antichain functions
%J Vestnik Moskovskogo universiteta. Matematika, mehanika
%D 2016
%P 51-52
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/VMUMM_2016_2_a9/
%G ru
%F VMUMM_2016_2_a9
O. V. Podolskaya. Complexity of linear and majority functions in the basis of antichain functions. Vestnik Moskovskogo universiteta. Matematika, mehanika, no. 2 (2016), pp. 51-52. http://geodesic.mathdoc.fr/item/VMUMM_2016_2_a9/