Complexity of linear and majority functions in the basis of antichain functions
Vestnik Moskovskogo universiteta. Matematika, mehanika, no. 2 (2016), pp. 51-52
Voir la notice de l'article provenant de la source Math-Net.Ru
The complexity circuits of Boolean functions is studied in a basis consisting of all characteristic functions of antichains over the Boolean cube. It is established that the circuit complexity of an $n$-variable parity function is $\left\lfloor \frac{n+1}{2}\right\rfloor$ and the complexity of its negation equals the complexity of the $n$-variable majority function which is $\left\lceil \frac{n+1}{2} \right\rceil$.
@article{VMUMM_2016_2_a9,
author = {O. V. Podolskaya},
title = {Complexity of linear and majority functions in the basis of antichain functions},
journal = {Vestnik Moskovskogo universiteta. Matematika, mehanika},
pages = {51--52},
publisher = {mathdoc},
number = {2},
year = {2016},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/VMUMM_2016_2_a9/}
}
TY - JOUR AU - O. V. Podolskaya TI - Complexity of linear and majority functions in the basis of antichain functions JO - Vestnik Moskovskogo universiteta. Matematika, mehanika PY - 2016 SP - 51 EP - 52 IS - 2 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/VMUMM_2016_2_a9/ LA - ru ID - VMUMM_2016_2_a9 ER -
O. V. Podolskaya. Complexity of linear and majority functions in the basis of antichain functions. Vestnik Moskovskogo universiteta. Matematika, mehanika, no. 2 (2016), pp. 51-52. http://geodesic.mathdoc.fr/item/VMUMM_2016_2_a9/