The topological entropy on a space of homeomorphisms does not belong to the first Baire class
Vestnik Moskovskogo universiteta. Matematika, mehanika, no. 2 (2016), pp. 44-48 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

The parametric family of Lipschitz homeomorphisms of a compact metric space continuously depending on the parameter is studied. We construct such a family that topological entropy of homeomorphism considered as a function of the parameter does not belong to the first Baire class.
@article{VMUMM_2016_2_a7,
     author = {A. N. Vetokhin},
     title = {The topological entropy on a space of homeomorphisms does not belong to the first {Baire} class},
     journal = {Vestnik Moskovskogo universiteta. Matematika, mehanika},
     pages = {44--48},
     year = {2016},
     number = {2},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/VMUMM_2016_2_a7/}
}
TY  - JOUR
AU  - A. N. Vetokhin
TI  - The topological entropy on a space of homeomorphisms does not belong to the first Baire class
JO  - Vestnik Moskovskogo universiteta. Matematika, mehanika
PY  - 2016
SP  - 44
EP  - 48
IS  - 2
UR  - http://geodesic.mathdoc.fr/item/VMUMM_2016_2_a7/
LA  - ru
ID  - VMUMM_2016_2_a7
ER  - 
%0 Journal Article
%A A. N. Vetokhin
%T The topological entropy on a space of homeomorphisms does not belong to the first Baire class
%J Vestnik Moskovskogo universiteta. Matematika, mehanika
%D 2016
%P 44-48
%N 2
%U http://geodesic.mathdoc.fr/item/VMUMM_2016_2_a7/
%G ru
%F VMUMM_2016_2_a7
A. N. Vetokhin. The topological entropy on a space of homeomorphisms does not belong to the first Baire class. Vestnik Moskovskogo universiteta. Matematika, mehanika, no. 2 (2016), pp. 44-48. http://geodesic.mathdoc.fr/item/VMUMM_2016_2_a7/

[1] Katok A.B., Khasselblat B., Vvedenie v sovremennuyu teoriyu dinamicheskikh sistem, Faktorial, M., 1999 | MR

[2] Ber R., Teoriya razryvnykh funktsii, GTTI, M., 1932

[3] Vetokhin A.N., “O nekotorykh svoistvakh topologicheskoi entropii dinamicheskikh sistem”, Matem. zametki, 93:3 (2013), 347–356 | DOI | MR | Zbl