The topological entropy on a space of homeomorphisms does not belong to the first Baire class
Vestnik Moskovskogo universiteta. Matematika, mehanika, no. 2 (2016), pp. 44-48
Cet article a éte moissonné depuis la source Math-Net.Ru
The parametric family of Lipschitz homeomorphisms of a compact metric space continuously depending on the parameter is studied. We construct such a family that topological entropy of homeomorphism considered as a function of the parameter does not belong to the first Baire class.
@article{VMUMM_2016_2_a7,
author = {A. N. Vetokhin},
title = {The topological entropy on a space of homeomorphisms does not belong to the first {Baire} class},
journal = {Vestnik Moskovskogo universiteta. Matematika, mehanika},
pages = {44--48},
year = {2016},
number = {2},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/VMUMM_2016_2_a7/}
}
TY - JOUR AU - A. N. Vetokhin TI - The topological entropy on a space of homeomorphisms does not belong to the first Baire class JO - Vestnik Moskovskogo universiteta. Matematika, mehanika PY - 2016 SP - 44 EP - 48 IS - 2 UR - http://geodesic.mathdoc.fr/item/VMUMM_2016_2_a7/ LA - ru ID - VMUMM_2016_2_a7 ER -
A. N. Vetokhin. The topological entropy on a space of homeomorphisms does not belong to the first Baire class. Vestnik Moskovskogo universiteta. Matematika, mehanika, no. 2 (2016), pp. 44-48. http://geodesic.mathdoc.fr/item/VMUMM_2016_2_a7/
[1] Katok A.B., Khasselblat B., Vvedenie v sovremennuyu teoriyu dinamicheskikh sistem, Faktorial, M., 1999 | MR
[2] Ber R., Teoriya razryvnykh funktsii, GTTI, M., 1932
[3] Vetokhin A.N., “O nekotorykh svoistvakh topologicheskoi entropii dinamicheskikh sistem”, Matem. zametki, 93:3 (2013), 347–356 | DOI | MR | Zbl