The mapping taking three points of a Banach space to their Steiner point
Vestnik Moskovskogo universiteta. Matematika, mehanika, no. 2 (2016), pp. 40-44
Cet article a éte moissonné depuis la source Math-Net.Ru
A mapping $\mathrm{St}$ sending any three points $a, b, c$ of a Banach space $X$ into a set $\mathrm{St}(a, b, c)$ of their medians and a corresponding operator $P_D$ of metric projection of a space $X \times X \times X$ onto its diagonal subspace $D=\{(x, x, x) \colon x \in X\}$, $P_D(a, b, c)=\{(s, s, s) \colon s \in \mathrm{St}(a, b, c)\}$, are considered. The linearity coefficient of arbitrary selection from $P_D$ is estimated, depending on different properties of the space $X$. As a corollary, estimates for the Lipschitz constant of arbitrary selection from the mapping $\mathrm{St}$ are obtained.
@article{VMUMM_2016_2_a6,
author = {K. V. Chesnokova},
title = {The mapping taking three points of a {Banach} space to their {Steiner} point},
journal = {Vestnik Moskovskogo universiteta. Matematika, mehanika},
pages = {40--44},
year = {2016},
number = {2},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/VMUMM_2016_2_a6/}
}
K. V. Chesnokova. The mapping taking three points of a Banach space to their Steiner point. Vestnik Moskovskogo universiteta. Matematika, mehanika, no. 2 (2016), pp. 40-44. http://geodesic.mathdoc.fr/item/VMUMM_2016_2_a6/
[1] Garkavi A.L., Shmatkov V.A., “O tochke Lame i ee obobscheniyakh v normirovannom prostranstve”, Matem. sb., 95(137):2(10) (1974), 272–293 | MR | Zbl
[2] Rubinshtein G.Sh., “Ob odnoi ekstremalnoi zadache v lineinom normirovannom prostranstve”, Sib. matem. zhurn., VI:3 (1965), 711–714 | Zbl
[3] Borodin P.A., “Koeffitsient lineinosti operatora metricheskogo proektirovaniya na chebyshevskoe podprostranstvo”, Matem. zametki, 85:2 (2009), 180-188 | DOI | Zbl
[4] Distel Dzh., Geometriya banakhovykh prostranstv, Vischa shkola, Kiev, 1980 | MR
[5] Kahane J.-P., “Best approximation in $L^1(T)$”, Bull. Amer. Math. Soc., 80:5 (1974), 788–804 | DOI | MR | Zbl