The mapping taking three points of a Banach space to their Steiner point
Vestnik Moskovskogo universiteta. Matematika, mehanika, no. 2 (2016), pp. 40-44
Voir la notice de l'article provenant de la source Math-Net.Ru
A mapping $\mathrm{St}$ sending any three points $a, b, c$ of a Banach space $X$ into a set $\mathrm{St}(a, b, c)$ of their medians
and a corresponding operator $P_D$ of metric projection of a space $X \times X \times X$ onto its diagonal subspace
$D=\{(x, x, x) \colon x \in X\}$, $P_D(a, b, c)=\{(s, s, s) \colon s \in \mathrm{St}(a, b, c)\}$, are considered.
The linearity coefficient of arbitrary selection from $P_D$ is estimated, depending on different properties of the space $X$.
As a corollary, estimates for the Lipschitz constant of arbitrary selection from the mapping $\mathrm{St}$ are obtained.
@article{VMUMM_2016_2_a6,
author = {K. V. Chesnokova},
title = {The mapping taking three points of a {Banach} space to their {Steiner} point},
journal = {Vestnik Moskovskogo universiteta. Matematika, mehanika},
pages = {40--44},
publisher = {mathdoc},
number = {2},
year = {2016},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/VMUMM_2016_2_a6/}
}
TY - JOUR AU - K. V. Chesnokova TI - The mapping taking three points of a Banach space to their Steiner point JO - Vestnik Moskovskogo universiteta. Matematika, mehanika PY - 2016 SP - 40 EP - 44 IS - 2 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/VMUMM_2016_2_a6/ LA - ru ID - VMUMM_2016_2_a6 ER -
K. V. Chesnokova. The mapping taking three points of a Banach space to their Steiner point. Vestnik Moskovskogo universiteta. Matematika, mehanika, no. 2 (2016), pp. 40-44. http://geodesic.mathdoc.fr/item/VMUMM_2016_2_a6/