A weakly supercritical mode in a branching random walk
Vestnik Moskovskogo universiteta. Matematika, mehanika, no. 2 (2016), pp. 37-40

Voir la notice de l'article provenant de la source Math-Net.Ru

The case of weakly supercritical branching random walks is considered. A theorem on asymptotic behavior of the eigenvalue of the operator defining the process is obtained for this case. Analogues of the theorems on asymptotic behavior of the Green function under large deviations of a branching random walk and asymptotic behavior of the spread front of population of particles are established for the case of a simple symmetric branching random walk over a many-dimensional lattice. The constants for these theorems are exactly determined in terms of parameters of walking and branching.
@article{VMUMM_2016_2_a5,
     author = {E. A. Antonenko},
     title = {A weakly supercritical mode in a branching random walk},
     journal = {Vestnik Moskovskogo universiteta. Matematika, mehanika},
     pages = {37--40},
     publisher = {mathdoc},
     number = {2},
     year = {2016},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/VMUMM_2016_2_a5/}
}
TY  - JOUR
AU  - E. A. Antonenko
TI  - A weakly supercritical mode in a branching random walk
JO  - Vestnik Moskovskogo universiteta. Matematika, mehanika
PY  - 2016
SP  - 37
EP  - 40
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/VMUMM_2016_2_a5/
LA  - ru
ID  - VMUMM_2016_2_a5
ER  - 
%0 Journal Article
%A E. A. Antonenko
%T A weakly supercritical mode in a branching random walk
%J Vestnik Moskovskogo universiteta. Matematika, mehanika
%D 2016
%P 37-40
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/VMUMM_2016_2_a5/
%G ru
%F VMUMM_2016_2_a5
E. A. Antonenko. A weakly supercritical mode in a branching random walk. Vestnik Moskovskogo universiteta. Matematika, mehanika, no. 2 (2016), pp. 37-40. http://geodesic.mathdoc.fr/item/VMUMM_2016_2_a5/