Motion of a thin plate in an elastic medium
Vestnik Moskovskogo universiteta. Matematika, mehanika, no. 2 (2016), pp. 30-36 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

A solution to the problem of the motion of a thin rigid plate in an elastic medium is obtained using the Smirnov–Sobolev method for solving a two-dimensional wave equation.
@article{VMUMM_2016_2_a4,
     author = {P. Ya. Livasov},
     title = {Motion of a thin plate in an elastic medium},
     journal = {Vestnik Moskovskogo universiteta. Matematika, mehanika},
     pages = {30--36},
     year = {2016},
     number = {2},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/VMUMM_2016_2_a4/}
}
TY  - JOUR
AU  - P. Ya. Livasov
TI  - Motion of a thin plate in an elastic medium
JO  - Vestnik Moskovskogo universiteta. Matematika, mehanika
PY  - 2016
SP  - 30
EP  - 36
IS  - 2
UR  - http://geodesic.mathdoc.fr/item/VMUMM_2016_2_a4/
LA  - ru
ID  - VMUMM_2016_2_a4
ER  - 
%0 Journal Article
%A P. Ya. Livasov
%T Motion of a thin plate in an elastic medium
%J Vestnik Moskovskogo universiteta. Matematika, mehanika
%D 2016
%P 30-36
%N 2
%U http://geodesic.mathdoc.fr/item/VMUMM_2016_2_a4/
%G ru
%F VMUMM_2016_2_a4
P. Ya. Livasov. Motion of a thin plate in an elastic medium. Vestnik Moskovskogo universiteta. Matematika, mehanika, no. 2 (2016), pp. 30-36. http://geodesic.mathdoc.fr/item/VMUMM_2016_2_a4/

[1] Poruchikov V.B., Metody dinamicheskoi teorii uprugosti, Nauka, M., 1986 | MR

[2] Lavrentev M.A., Metody teorii funktsii kompleksnogo peremennogo, 3-e izd., Nauka, M., 1965 | MR

[3] Muskhelishvili N.I., Singulyarnye integralnye uravneniya, 2-e izd., Fizmatgiz, M., 1962 | MR