Integrable systems in dynamics on a tangent foliation to a sphere
Vestnik Moskovskogo universiteta. Matematika, mehanika, no. 2 (2016), pp. 25-30 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

The mechanical systems which have the tangent bundle of a two-dimensional sphere as their phase space are studied. The potential nonconservative systems describing a geodesic flow are classified. A multi-parameter family of systems possessing the complete list of (in general) transcendental first integrals expressed in terms of finite combinations of elementary functions is found. Some examples from spatial dynamics of a rigid body interacting with a medium are given.
@article{VMUMM_2016_2_a3,
     author = {M. V. Shamolin},
     title = {Integrable systems in dynamics on a tangent foliation to a sphere},
     journal = {Vestnik Moskovskogo universiteta. Matematika, mehanika},
     pages = {25--30},
     year = {2016},
     number = {2},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/VMUMM_2016_2_a3/}
}
TY  - JOUR
AU  - M. V. Shamolin
TI  - Integrable systems in dynamics on a tangent foliation to a sphere
JO  - Vestnik Moskovskogo universiteta. Matematika, mehanika
PY  - 2016
SP  - 25
EP  - 30
IS  - 2
UR  - http://geodesic.mathdoc.fr/item/VMUMM_2016_2_a3/
LA  - ru
ID  - VMUMM_2016_2_a3
ER  - 
%0 Journal Article
%A M. V. Shamolin
%T Integrable systems in dynamics on a tangent foliation to a sphere
%J Vestnik Moskovskogo universiteta. Matematika, mehanika
%D 2016
%P 25-30
%N 2
%U http://geodesic.mathdoc.fr/item/VMUMM_2016_2_a3/
%G ru
%F VMUMM_2016_2_a3
M. V. Shamolin. Integrable systems in dynamics on a tangent foliation to a sphere. Vestnik Moskovskogo universiteta. Matematika, mehanika, no. 2 (2016), pp. 25-30. http://geodesic.mathdoc.fr/item/VMUMM_2016_2_a3/

[1] Shamolin M.V., Metody analiza dinamicheskikh sistem s peremennoi dissipatsiei v dinamike tverdogo tela, Ekzamen, M., 2007

[2] Shamolin M.V., “Dinamicheskie sistemy s peremennoi dissipatsiei: podkhody, metody, prilozheniya”, Fund. i prikl. matem., 14:3 (2008), 3–237

[3] Trofimov V.V., Shamolin M.V., “Geometricheskie i dinamicheskie invarianty integriruemykh gamiltonovykh i dissipativnykh sistem”, Fund. i prikl. matem., 16:4 (2010), 3–229

[4] Shamolin M.V., “Ob integriruemosti v transtsendentnykh funktsiyakh”, Uspekhi matem. nauk, 53:3 (1998), 209–210 | DOI | MR | Zbl

[5] Shabat B.V., Vvedenie v kompleksnyi analiz, Nauka, M., 1987 | MR

[6] Shamolin M.V., “Mnogoobrazie sluchaev integriruemosti v dinamike malomernogo i mnogomernogo tverdogo tela v nekonservativnom pole sil”, Itogi nauki i tekhniki. Sovremennaya matematika i ee prilozheniya. Tematicheskie obzory, 125, VINITI, M., 2013, 5–254

[7] Chaplygin S.A., “O dvizhenii tyazhelykh tel v neszhimaemoi zhidkosti”, Poln. sobr. soch., v. 1, Izd-vo AN SSSR, L., 1933, 133–135

[8] Shamolin M.V., “Novye sluchai integriruemosti v prostranstvennoi dinamike tverdogo tela”, Dokl. RAN, 431:3 (2010), 339–343 | MR | Zbl

[9] Shamolin M.V., “Novyi sluchai integriruemosti v prostranstvennoi dinamike tverdogo tela, vzaimodeistvuyuschego so sredoi, pri uchete lineinogo dempfirovaniya”, Dokl. RAN, 442:4 (2012), 479–481 | MR