@article{VMUMM_2016_2_a3,
author = {M. V. Shamolin},
title = {Integrable systems in dynamics on a tangent foliation to a sphere},
journal = {Vestnik Moskovskogo universiteta. Matematika, mehanika},
pages = {25--30},
year = {2016},
number = {2},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/VMUMM_2016_2_a3/}
}
M. V. Shamolin. Integrable systems in dynamics on a tangent foliation to a sphere. Vestnik Moskovskogo universiteta. Matematika, mehanika, no. 2 (2016), pp. 25-30. http://geodesic.mathdoc.fr/item/VMUMM_2016_2_a3/
[1] Shamolin M.V., Metody analiza dinamicheskikh sistem s peremennoi dissipatsiei v dinamike tverdogo tela, Ekzamen, M., 2007
[2] Shamolin M.V., “Dinamicheskie sistemy s peremennoi dissipatsiei: podkhody, metody, prilozheniya”, Fund. i prikl. matem., 14:3 (2008), 3–237
[3] Trofimov V.V., Shamolin M.V., “Geometricheskie i dinamicheskie invarianty integriruemykh gamiltonovykh i dissipativnykh sistem”, Fund. i prikl. matem., 16:4 (2010), 3–229
[4] Shamolin M.V., “Ob integriruemosti v transtsendentnykh funktsiyakh”, Uspekhi matem. nauk, 53:3 (1998), 209–210 | DOI | MR | Zbl
[5] Shabat B.V., Vvedenie v kompleksnyi analiz, Nauka, M., 1987 | MR
[6] Shamolin M.V., “Mnogoobrazie sluchaev integriruemosti v dinamike malomernogo i mnogomernogo tverdogo tela v nekonservativnom pole sil”, Itogi nauki i tekhniki. Sovremennaya matematika i ee prilozheniya. Tematicheskie obzory, 125, VINITI, M., 2013, 5–254
[7] Chaplygin S.A., “O dvizhenii tyazhelykh tel v neszhimaemoi zhidkosti”, Poln. sobr. soch., v. 1, Izd-vo AN SSSR, L., 1933, 133–135
[8] Shamolin M.V., “Novye sluchai integriruemosti v prostranstvennoi dinamike tverdogo tela”, Dokl. RAN, 431:3 (2010), 339–343 | MR | Zbl
[9] Shamolin M.V., “Novyi sluchai integriruemosti v prostranstvennoi dinamike tverdogo tela, vzaimodeistvuyuschego so sredoi, pri uchete lineinogo dempfirovaniya”, Dokl. RAN, 442:4 (2012), 479–481 | MR