The condition of almost everywhere convergence for a functional series with a weak analogue of the orthonormality property
Vestnik Moskovskogo universiteta. Matematika, mehanika, no. 2 (2016), pp. 18-24 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

The almost everywhere convergence condition similar to the Menchoff–Rademacher condition is obtained for functional series with some weak analogue of the orthogonality property. As a corollary, the results of almost everywhere convergence of series with respect to Riesz systems, Hilbert and Bessel systems, and frames are obtained.
@article{VMUMM_2016_2_a2,
     author = {V. V. Galatenko and T. P. Lukashenko and V. A. Sadovnichii},
     title = {The condition of almost everywhere convergence for a functional series with a weak analogue of the orthonormality property},
     journal = {Vestnik Moskovskogo universiteta. Matematika, mehanika},
     pages = {18--24},
     year = {2016},
     number = {2},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/VMUMM_2016_2_a2/}
}
TY  - JOUR
AU  - V. V. Galatenko
AU  - T. P. Lukashenko
AU  - V. A. Sadovnichii
TI  - The condition of almost everywhere convergence for a functional series with a weak analogue of the orthonormality property
JO  - Vestnik Moskovskogo universiteta. Matematika, mehanika
PY  - 2016
SP  - 18
EP  - 24
IS  - 2
UR  - http://geodesic.mathdoc.fr/item/VMUMM_2016_2_a2/
LA  - ru
ID  - VMUMM_2016_2_a2
ER  - 
%0 Journal Article
%A V. V. Galatenko
%A T. P. Lukashenko
%A V. A. Sadovnichii
%T The condition of almost everywhere convergence for a functional series with a weak analogue of the orthonormality property
%J Vestnik Moskovskogo universiteta. Matematika, mehanika
%D 2016
%P 18-24
%N 2
%U http://geodesic.mathdoc.fr/item/VMUMM_2016_2_a2/
%G ru
%F VMUMM_2016_2_a2
V. V. Galatenko; T. P. Lukashenko; V. A. Sadovnichii. The condition of almost everywhere convergence for a functional series with a weak analogue of the orthonormality property. Vestnik Moskovskogo universiteta. Matematika, mehanika, no. 2 (2016), pp. 18-24. http://geodesic.mathdoc.fr/item/VMUMM_2016_2_a2/

[1] Kashin B.S., Saakyan A.A., Ortogonalnye ryady, Izd-vo AFTs, M., 1999 | MR

[2] Kachmazh S., Shteingauz G., Teoriya ortogonalnykh ryadov, GIFML, M., 1958 | MR

[3] Aleksich G., Problemy skhodimosti ortogonalnykh ryadov, Nauka, M., 1984 | MR

[4] Kolmogorov A.N., Fomin S.V., Elementy teorii funktsii i funktsionalnogo analiza, Nauka, M., 1976 | MR

[5] Bogachev V.I., Smolyanov O.G., Deistvitelnyi i funktsionalnyi analiz, Universitetskii kurs, NITs RKhD, M.–Izhevsk, 2009

[6] Menshov D.E., “Sur les séries de fonctions ortogonales”, Fund. math., 4 (1923), 82–105 | DOI

[7] Rademacher H., “Einige Sätze über Reihen von allgemeinen Orthogonalfunktionen”, Math. Ann., 87 (1922), 111–138 | DOI | MR

[8] Bari N.K., “Biortogonalnye sistemy i bazisy v gilbertovom prostranstve”, Uch. zap. MGU, 148:IV (1951), 69–107

[9] Kac M., Salem R., Zygmund A., “A gap theorem”, Trans. Amer. Math. Soc., 63 (1948), 235–243 | DOI | MR | Zbl

[10] Duffin R.J., Schaeffer A.C., “A class of nonharmonic Fourier seriese”, Trans. Amer. Math. Soc., 72 (1952), 341–366 | DOI | MR | Zbl

[11] Dobeshi I., Desyat lektsii po veivletam, RKhD, Izhevsk, 2001

[12] Novikov I.Ya., Protasov V.Yu., Skopina M.A., Teoriya vspleskov, Fizmatlit, M., 2005 | MR

[13] Lukashenko T.P., “O svoistvakh sistem razlozheniya, podobnykh ortogonalnym”, Izv. RAN. Ser. matem., 62:5 (1998), 187–206 | DOI | MR | Zbl

[14] Lukashenko T.P., “Analog teoremy Menshova–Rademakhera dlya obobschennykh ortopodobnykh sistem”, Vestn. Mosk. un-ta. Matem. Mekhan., 1999, no. 5, 31–35 | Zbl