The condition of almost everywhere convergence for a functional series with a weak analogue of the orthonormality property
Vestnik Moskovskogo universiteta. Matematika, mehanika, no. 2 (2016), pp. 18-24

Voir la notice de l'article provenant de la source Math-Net.Ru

The almost everywhere convergence condition similar to the Menchoff–Rademacher condition is obtained for functional series with some weak analogue of the orthogonality property. As a corollary, the results of almost everywhere convergence of series with respect to Riesz systems, Hilbert and Bessel systems, and frames are obtained.
@article{VMUMM_2016_2_a2,
     author = {V. V. Galatenko and T. P. Lukashenko and V. A. Sadovnichii},
     title = {The condition of almost everywhere convergence for a functional series with a weak analogue of the orthonormality property},
     journal = {Vestnik Moskovskogo universiteta. Matematika, mehanika},
     pages = {18--24},
     publisher = {mathdoc},
     number = {2},
     year = {2016},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/VMUMM_2016_2_a2/}
}
TY  - JOUR
AU  - V. V. Galatenko
AU  - T. P. Lukashenko
AU  - V. A. Sadovnichii
TI  - The condition of almost everywhere convergence for a functional series with a weak analogue of the orthonormality property
JO  - Vestnik Moskovskogo universiteta. Matematika, mehanika
PY  - 2016
SP  - 18
EP  - 24
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/VMUMM_2016_2_a2/
LA  - ru
ID  - VMUMM_2016_2_a2
ER  - 
%0 Journal Article
%A V. V. Galatenko
%A T. P. Lukashenko
%A V. A. Sadovnichii
%T The condition of almost everywhere convergence for a functional series with a weak analogue of the orthonormality property
%J Vestnik Moskovskogo universiteta. Matematika, mehanika
%D 2016
%P 18-24
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/VMUMM_2016_2_a2/
%G ru
%F VMUMM_2016_2_a2
V. V. Galatenko; T. P. Lukashenko; V. A. Sadovnichii. The condition of almost everywhere convergence for a functional series with a weak analogue of the orthonormality property. Vestnik Moskovskogo universiteta. Matematika, mehanika, no. 2 (2016), pp. 18-24. http://geodesic.mathdoc.fr/item/VMUMM_2016_2_a2/