Orientational instability of a lyotropic nematic liquid crystal layer
Vestnik Moskovskogo universiteta. Matematika, mehanika, no. 2 (2016), pp. 57-59 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

The problem of periodic domain initiation in a thin lyotropic nematic liquid crystal layer is studied. This layer has a planar director initial orientation, but the anchoring energy is minimized by the homeotropic one. The periodic structures with the perpendicular to the director wave vector exist during the director reorientation process from the planar orientation to the homeotropic one when the reorientation wave front appears. It is shown that the divergent terms of the Frank orientation elasticity energy plays an important role in this effect. The saddle-splay Frank constant and the anisotropic anchoring energy coefficient are estimated.
@article{VMUMM_2016_2_a11,
     author = {A. G. Kalugin},
     title = {Orientational instability of a lyotropic nematic liquid crystal layer},
     journal = {Vestnik Moskovskogo universiteta. Matematika, mehanika},
     pages = {57--59},
     year = {2016},
     number = {2},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/VMUMM_2016_2_a11/}
}
TY  - JOUR
AU  - A. G. Kalugin
TI  - Orientational instability of a lyotropic nematic liquid crystal layer
JO  - Vestnik Moskovskogo universiteta. Matematika, mehanika
PY  - 2016
SP  - 57
EP  - 59
IS  - 2
UR  - http://geodesic.mathdoc.fr/item/VMUMM_2016_2_a11/
LA  - ru
ID  - VMUMM_2016_2_a11
ER  - 
%0 Journal Article
%A A. G. Kalugin
%T Orientational instability of a lyotropic nematic liquid crystal layer
%J Vestnik Moskovskogo universiteta. Matematika, mehanika
%D 2016
%P 57-59
%N 2
%U http://geodesic.mathdoc.fr/item/VMUMM_2016_2_a11/
%G ru
%F VMUMM_2016_2_a11
A. G. Kalugin. Orientational instability of a lyotropic nematic liquid crystal layer. Vestnik Moskovskogo universiteta. Matematika, mehanika, no. 2 (2016), pp. 57-59. http://geodesic.mathdoc.fr/item/VMUMM_2016_2_a11/

[1] Pikin S.A., Strukturnye prevrascheniya v zhidkikh kristallakh, Nauka, M., 1981

[2] Barbero G., Evangelista L. R., Lelidis I., “Spontaneous periodic distortions in nematic liquid crystals: Dependence on the tilt angle”, Phys. Rev. E, 67 (2003), 051708, 4 pp. | DOI

[3] Golovanov A.V., Kaznacheev A.V., Sonin A.S., “Orientatsionnaya neustoichivost liotropnogo nematika pri techenii”, Izv. RAN. Ser. fiz., 62:8 (1998), 1658–1661

[4] Golubyatnikov A.N., Kalugin A.G., “O korotkikh poverkhnostnykh volnakh v anizotropnykh zhidkostyakh”, Vestn. Mosk. un-ta. Matem. Mekhan., 2001, no. 1, 42–43 | MR

[5] Kalugin A.G., Golubyatnikov A.N., “O ravnovesnoi forme kapli nematicheskogo zhidkogo kristalla”, Tr. Matem. in-ta RAN, 223, 1998, 171–177 | MR | Zbl

[6] Igosheva M., Kalugin A., “Capillary waves in nematic liquid crystal”, Mol. Cryst. and Liquid Cryst., 526 (2010), 10–17 | DOI

[7] Kalugin A.G., “O roli divergentnykh chlenov v energii Franka nematicheskikh zhidkikh kristallov”, Vestn. Mosk. un-ta. Matem. Mekhan., 2013, no. 1, 69–71 | Zbl

[8] Kalugin A.G., “O ravnovesii sloya nematicheskogo zhidkogo kristalla s neodnorodnoi granitsei”, Izv. RAN. Mekhan. zhidkosti i gaza, 2015, no. 1, 4–7

[9] Polak R.D., Crawford G.P., Kostival B.C., Doane J. W., Zumer S., “Optical determination of the saddle-splay elastic constant $K_{24}$ in nematic liquid crystals”, Phys. Rev. E, 49 (1994), R978–R981 | DOI

[10] Sparavigna A., Lavrentovich O.D., Strigazzi A., “Periodic stripe domains and hybrid-alignment regime in nematic liquid crystals: Threshold analysis”, Phys. Rev. E, 49 (1994), 1344–1352 | DOI

[11] Golovanov A.V., Kaznacheev A.V., Sonin A.S., “Kontsentratsionnye zavisimosti vyazkouprugikh svoistv khromonicheskogo nematika”, Izv. RAN. Ser. fiz., 60:4 (1996), 43–46 | DOI | MR

[12] Golovanov A.V., Kaznacheev A.V., Sonin A.S., “Temperaturnye zavisimosti vyazkouprugikh parametrov nematika v sisteme disulfoindantron–voda”, Izv. RAN. Ser. fiz., 59:3 (1995), 62–67