Reconstruction of norm by geometry of minimal networks
Vestnik Moskovskogo universiteta. Matematika, mehanika, no. 2 (2016), pp. 53-56 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

The inverse problem to the Steiner minimal tree searching problem in a normed space is studied. Namely, let a normed space be given and all Steiner minimal trees be known in this space. The problem is to describe all norms with the same minimal Steiner trees for all finite boundary sets as determined in a given space. The paper presents a review of known results on the question and announces the uniqueness of the set of Steiner minimal trees for any two-dimensional space with a strongly convex and differentiable norm.
@article{VMUMM_2016_2_a10,
     author = {I. L. Laut},
     title = {Reconstruction of norm by geometry of minimal networks},
     journal = {Vestnik Moskovskogo universiteta. Matematika, mehanika},
     pages = {53--56},
     year = {2016},
     number = {2},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/VMUMM_2016_2_a10/}
}
TY  - JOUR
AU  - I. L. Laut
TI  - Reconstruction of norm by geometry of minimal networks
JO  - Vestnik Moskovskogo universiteta. Matematika, mehanika
PY  - 2016
SP  - 53
EP  - 56
IS  - 2
UR  - http://geodesic.mathdoc.fr/item/VMUMM_2016_2_a10/
LA  - ru
ID  - VMUMM_2016_2_a10
ER  - 
%0 Journal Article
%A I. L. Laut
%T Reconstruction of norm by geometry of minimal networks
%J Vestnik Moskovskogo universiteta. Matematika, mehanika
%D 2016
%P 53-56
%N 2
%U http://geodesic.mathdoc.fr/item/VMUMM_2016_2_a10/
%G ru
%F VMUMM_2016_2_a10
I. L. Laut. Reconstruction of norm by geometry of minimal networks. Vestnik Moskovskogo universiteta. Matematika, mehanika, no. 2 (2016), pp. 53-56. http://geodesic.mathdoc.fr/item/VMUMM_2016_2_a10/

[1] Ilyutko D.P., “Razvetvlennye ekstremali funktsionala $\lambda$-normirovannoi dliny”, Matem. sb., 197:5 (2006), 75–98 | DOI | MR | Zbl

[2] Swanepoel K., “The local Steiner problem in finite-dimensional normed spaces”, Discrete $\$ Comput. Geometry, 37 (2007), 419–442 | DOI | MR | Zbl

[3] Benitez C., Fernandez M., Soriano M.L., “Location of the Fermat–Torricelli medians of three points”, Trans. Amer. Math. Soc., 354 (2002), 5027–5038 | DOI | MR | Zbl

[4] Ivanov A.O., Tuzhilin A.A., “Razvetvlennye geodezicheskie v normirovannykh prostranstvakh”, Izv. RAN. Ser. matem., 66:5 (2002), 33–82 | DOI | MR | Zbl

[5] Laut I.L., Ovsyannikov Z.N., “Vid minimalnykh razvetvlennykh geodezicheskikh v normirovannom prostranstve opredelyaet normu”, Fund. i prikl. matem., 18:2 (2013), 67–77