Revision of asymptotic behavior of the complexity of word assembly by concatenation circuits
Vestnik Moskovskogo universiteta. Matematika, mehanika, no. 2 (2016), pp. 12-18

Voir la notice de l'article provenant de la source Math-Net.Ru

The problem of complexity of word assembly is studied. The complexity of a word means the minimal number of concatenation operations sufficient to obtain this word in the basis of one-letter words over a finite alphabet $A$ (repeated use of obtained words is permitted). Let $L_A^c(n)$ be the maximum complexity of words of length $n$ over a finite alphabet $A$. In this paper we prove that $ L_A^c(n) = \frac n {\log_{|A|} n} \left( 1 + (2+o(1)) \frac {\log_2 \log_2 n}{\log_2 n} \right). $
@article{VMUMM_2016_2_a1,
     author = {V. V. Kochergin and D. V. Kochergin},
     title = {Revision of asymptotic behavior of the complexity of word assembly by concatenation circuits},
     journal = {Vestnik Moskovskogo universiteta. Matematika, mehanika},
     pages = {12--18},
     publisher = {mathdoc},
     number = {2},
     year = {2016},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/VMUMM_2016_2_a1/}
}
TY  - JOUR
AU  - V. V. Kochergin
AU  - D. V. Kochergin
TI  - Revision of asymptotic behavior of the complexity of word assembly by concatenation circuits
JO  - Vestnik Moskovskogo universiteta. Matematika, mehanika
PY  - 2016
SP  - 12
EP  - 18
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/VMUMM_2016_2_a1/
LA  - ru
ID  - VMUMM_2016_2_a1
ER  - 
%0 Journal Article
%A V. V. Kochergin
%A D. V. Kochergin
%T Revision of asymptotic behavior of the complexity of word assembly by concatenation circuits
%J Vestnik Moskovskogo universiteta. Matematika, mehanika
%D 2016
%P 12-18
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/VMUMM_2016_2_a1/
%G ru
%F VMUMM_2016_2_a1
V. V. Kochergin; D. V. Kochergin. Revision of asymptotic behavior of the complexity of word assembly by concatenation circuits. Vestnik Moskovskogo universiteta. Matematika, mehanika, no. 2 (2016), pp. 12-18. http://geodesic.mathdoc.fr/item/VMUMM_2016_2_a1/